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P E E P A C E .

THE best advice which can be given to a student of physics regard-

ing the books which he should read is to use separate works

written on the various branches of the subject by the leading

physicists of the day. Yet this advice has one evident disadvantage.

The student who follows it may not get so complete a view of the

essential unity and interdependence of the various branches of his

subject as it is desirable that he should. And, besides this, there is

no doubt that a small volume which gives, as far as is possible, a

review of the elements of the whole subject, is a desideratum to the

student while in attendance on University classes. I have under-

taken the writing of this work in the hope that it may to some

extent meet that want.

I have throughout endeavoured to bring into prominence the

necessity for, and the value of, scientific hypotheses a matter

regarding which very hazy notions are only too common.
- It has also been my aim to make the treatment of the mathe-

matical portions of the text as simple as possible. In this connection

I have not adopted the process which has recently been termed
'

calculus-dodging,' for the reason that the elementary methods of

the calculus are more simple, certainly are more natural, than the

methods by which they are usually supplanted.

At the same time it may be well to remark that any student,

who desires to do so, may simply assume the results of the mathe-

matical portions, and use the remainder (which is much the larger

part) of the text in his study of experimental physics.

In writing a text-book on general physics it is impossible, if

justice is to be done to the subject, to avoid borrowing methods

from the writings of the masters. In this respect I have to acknow-

ledge my indebtedness to the works of v. Helmholtz, Clerk-
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Maxwell, Thomson, Tait, and others. This is perhaps most evident

in Chapter XXVI., where I have made use of the very simple form

in which Tait has presented the analytical treatment of the theory
of Thermodynamics ;

and in Chapter XI., where I have adopted
his mode of discussing the compressibility and rigidity of solids.

This apart, I have endeavoured, whether successfully or not, to

present the various subjects in as fresh a manner as I could.

My indebtedness to Professor Tait has also been very great in the

matter of criticism, which he kindly afforded me on various points

while the book was passing through the press. I have also to

acknowledge with thanks the kindness of Mr. J. B. Clark, M.A.,

F.B.S.E., Physical Master in Heriot's Hospital, Edinburgh, in

reading the work both in manuscript and in proof. His careful

revision has resulted in the elimination of a number of defects which

had escaped my notice.

WILLIAM PEDDIE

EDINBUKGH UNIVERSITY,

November, 1891.
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A MANUAL OF PHYSICS.

CHAPTEE I.

INTRODUCTORY : THE PHYSICAL UNIVERSE.

1. ALL processes which occur in the universe may be classified as

physical or as non-physical. They appertain essentially on the

one hand to dead matter, or, on the other hand, to matter which

possesses (or is possessed by) life. This statement, of course, is . a

mere definition of what is meant by the word physical, and is not

to be regarded as being in any sense the expression of an opinion

regarding the nature of life. If, however, in the phenomena as-

sociated with living bodies we meet with processes akin to others

which occur in the inorganic world, we regard them as being purely

physical ; while if, in these phenomena, we meet with processes
which are totally dissimilar to any with which we are acquainted
in the phenomena of dead matter, we leave their further study to

the biologist.

2. It is evident, therefore, that the domain of the physical
sciences is of immense extent of such extent that no one, in the

course of the longest life, could hope to master all its known details.

At one time, indeed (and that not very remote), the scientist might
have said after the fashion of Francis Bacon 'I have taken all

knowledge for my realm,' but such a claim would be impossible
now. All questions regarding the combinations and interactions

of the various kinds of matter are purely physical in their nature,

but their study is now left to specialists in the department of

chemistry. The investigation and prediction of the .motions tif

the heavenly bodies and the determination of their physical constitu-

tion are left to the astronomer, while the configuration of the earth

is studied by the geographer. So also the sciences of navigation
and ship-designing, of engineering, mineralogy, geology (in large

1



2
A; MANUAL OF PHYSICS.

part at least); metieqrology, and so on, are purely physical sciences,

the study of which is undertaken by specialists, for all of them
could never be fully studied by any one man. Thus with increase

of knowledge the domain of the physical sciences has been sub-

divided, and the terms Physical Science, Natural Philosophy,
or Physics, have become restricted in meaning, so that they refer

merely to the pure scientific groundwork which underlies all the

more practical or more highly specialized physical sciences.

3. In commencing the study of physics we have no concern with

purely metaphysical questions regarding the objective reality or

non-reality of the universe. We simply assume that it has an

existence quite independently of the existence of an observing mind,
and then proceed to examine the facts and phenomena which

make up its entirety. But, before entering upon any detailed

examination, it is well that we should take a glance at our subject
as a whole in order to learn something of its scope and of the

mutual relations of its various parts : and this just for the same
reason as that which makes it desirable for the traveller in an

Unknown country to examine it first from the vantage-ground
of some commanding height, so that he may carry with him in

his future wanderings therein a clear mental picture of its dis-

position.

4. A most obvious difficulty meets us at the very outset. How
are we to distinguish between that which has true existence and
that which has only the appearance of it between the true land-

scape, as it were, and the mirage ? The mirage seems to the

observer to be as real as the reality. What, then, is to be the test

of true existence ?

In addition to the assumption of the true existence of the physical

universe, it is assumed that in this universe there is nothing
which does not occur according to law. But this assumption is

not left without support. The mere possibility of the existence of

the so-called exact sciences may be taken as evidence of its truth-

Keeping this idea in view, we see that no real thing can appear in,

or disappear from, the universe in an arbitrary manner. There-

fore we cannot regard anything as a reality unless we can

prove it to be constant in amount, that is (to use the ordinary
scientific expression), unless we can show that it possesses the

property of conservation. CONSERVATION is our great test of

reality.

This test being applied, it is found that there are two, and only

two, classes of things in the physical world MATTER and ENERGY

which sustain it.
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5. Everyone knows what is meant by the term the ' matter '

or
' material

'

of which a body is composed, so, in the meantime, no

attempt at a definition is necessary.

At first sight it might appear that matter is certainly not con-

served. If we weigh a lump of pure limestone, so as to determine

the amount of matter in it, and then heat it sufficiently, we find that

its weight has become less during the process. It would seem that

matter has been lost. But what has actually occurred is the decom-

position of the carbonate of lime, by the application of the heat, into

lime and carbonic acid gas. The latter, being colourless, passes

off unnoticed, and the second weighing gives only the weight of

the lime. By proper means the weight of the gas may be deter-

mined, and it is then found that the original weight of the limestone

is equal to the sum of the weights of its constituents. No matter

has been lost in the process. And in all chemical processes,

however complex, the same result holds : indeed, the science of

chemistry is a possibility only in virtue of the strict conservation

of matter. Therefore we say that matter is a real thing.

There are many kinds of matter which differ from one another to

a greater or less extent in their various physical properties. These

properties will be considered in detail in subsequent chapters, and

their variations from one to another of a few of the most important
or most peculiar substances will be indicated

;
but the enumeration,

classification, and investigation of the various substances in nature

belong more to the science of chemistry than to that of physics.

One special substance, which pervades all others and extends

throughout the whole of the visible universe, possesses such extra-

ordinary properties, and is of such immense importance physically,

that it must receive separate treatment. (Chap. XXXIII.)
6. In addition to the property of conservation, matter is charac-

terised by passivity or inertness. It is said to possess INERTIA.

In other words, a material body can do nothing of itself. If at

rest, it cannot move unless something outside of itself sets it in

motion. If moving, it cannot come to rest or alter its motion in

any way unless something external to it produce that effect. This

property and its consequences will be discussed under Newton's
' First Law of Motion '

(Chap. VI.). It is the distinguishing charac-

teristic of matter. One kind of matter can unite with another

kind so as to produce a compound, differing entirely, it may be, in

its properties from both of its constituents : but, without some-

thing external to the matter, no such combination or change could

occur.

7. There is every reason to believe that the inertia of matter

12
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cannot be overcome, that is, that the motion of matter cannot be

altered, unless motion is imparted to it from some other portion

of matter, whether by direct collision or otherwise. It is commonly
said, in such a case, that the second body

' does work '

upon the

first, or that the first has ' work done '

upon it by the second.

Thus ' the doing of work ' involves essentially the production of

motion. We might quite consistently assert that the second body

possesses
'

work,' and that it imparts
' work '

to the first the

transference of work being that process which, in ordinary language,
is called the performance of work. But it is usual and convenient

to adopt the term ENERGY instead ; for, although in all likelihood

the possession of work or energy necessarily involves motion of

the material system which possesses it, the moving system may
not be evident to our senses, in which case it is convenient to

speak of the energy as existing potentially in some connected

system which may be at rest at the time, but which can be set

in motion by having energy imparted to it from the other. (See

next section.)

Of two bodies moving with a common speed, that one with least

mass (quantity of matter) can do least work, and the same is true

of the slower moving of two bodies which have the same mass.

The work tends to vanish either as the mass or the speed becomes

indefinitely small ; and, so far as experiment (which is the only per-

missible test) shows, it does not depend upon anything else than the

mass and the speed.

Each unit of mass, moving with a given speed, is found to possess

the same amount of energy ; and, therefore, the energy of any body
is proportional to the total quantity of matter which it contains.

Now suppose that two bodies, whose masses are equal in amount,

are moving in the same straight line towards each other with equal

speeds. Each possesses an equal amount of energy, E (say). We
may assume that the result of the impact is that each body is

brought to rest, so that the quantity of energy %E has been

expended in stopping the forward motion of the two masses. Next,

let one of the bodies be at rest while the speed of the other is

doubled. The relative speed of the two is unaltered, and hence

the energy expended in impact is still ZE. But experiment shows

that the two bodies will now move together with half the speed

of the single one, so that each body still possesses energy E. There-

fore the single body, moving with double speed, possesses an amount

of energy 4E.

By this experiment, and by other similar experiments conducted

under varying conditions regarding the speeds of the moving bodies,
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it may be proved that the energy of a moving body varies directly as

the square of its speed.

If E be the energy of the moving body, we may express the

results just obtained by means of the equation

E =

where k is a constant. The value of k is purely arbitrary, depend-

ing on our choice of the unit of energy, but it will be shown

subsequently that it is convenient to choose the units, so that the

value of k is . Thus
E = $mv

2
.

8. Energy, when it is regarded as in the preceding paragraph,
is called energy of motion or kinetic energy. But, as already

indicated, we do not always perceive the system to which such

energy is communicated. The kinetic energy which the visible

system still possesses becomes less and less, and at last, in a certain

position of the system, it may entirely vanish. The kinetic energy

remaining at any instant may obviously be expressed in terms of

the position of the system, and so also may the energy which has

been given away from it. Therefore, on the assumption, made in 7,

that the gain of energy of the invisible system is equal to the loss

of energy of the visible one, we. can represent the kinetic energy
of the invisible system in terms of the position of the visible one.

This is always done when the two systems are so connected that,

when left to themselves, the energy will be recommunicated to the

original one, and so we speak of energy of position or potential

energy.
As a special example we may consider the case of a bullet fired

vertically upwards. The further it rises the less its speed becomes,
and the less work it can do in overcoming obstacles. At last it

comes to rest, and is totally devoid of kinetic energy. But we
have only to let it fall down again, and (neglecting the resistance

of the air) we find that its energy of motion, when it again reaches

the ground, has the same value as at first. Hence, instead of

saying that as the ball loses energy some connected system gains

it, we, for convenience, say that as it loses kinetic energy it gains

potential energy.
We do not yet know what this connected system, in the case of

gravitation, is. If Le Sage's hypothesis of ultra-mundane corpuscles

(Chap. VIII.) were true, the kinetic energy of a ball, projected

upwards against gravity, would be transmuted into kinetic energy
of the corpuscles.

We may distinguish a number of forms of energy, all of which
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can be classified under the two main types just defined. Kinetic

and potential energy of visible portions of matter have been already
considered. There is also kinetic energy of invisible portions of

matter (Chap. XX.), as in the case of a body which is sensibly hot.

And potential energy also exists on a similar scale, as in the case of

the so-called Latent Heat (Chap. XXIII.). Other examples appear in

the molecular motion of gases, and in the transmission of vibrations

through an elastic medium, etc. Again, two oppositely electrified

bodies attract each other, and so have potential energy of electrical

separation. And, when electricity flows along a conductor, the energy
of electricity in motion becomes evident. Also two chemical sub-

stances which tend to combine and form a compound substance are

said to have potential energy of chemical separation. Lastly, two

magnets have potential energy relatively to each other, and work

can be indirectly produced by means of the motion of magnets.
9. At this point we are led to regard that characteristic in the

possession of which energy differs totally and fundamentally from

matter. While matter is essentially passive, energy is constantly

in a state of change. It is constantly being handed on from one

portion of matter to another, and is ever being changed from one

to another of the forms above indicated. It is said to possess the

property of TRANSFORMATION.

Only in virtue of this property can we recognise its existence.

We could never have known that a moving cannon ball possessed

energy had we never seen its destructive effects. We would have

been ignorant of the energy of an electrified thunder-cloud if we

had not seen the production from it of light, heat, sound, and

mechanical effect. How energy is passed on from one material

system to another, and how it changes from one form to another,

are questions to which no final answer can at present be given.

A simple example of the transformation of energy is furnished by
the motion of an ordinary pendulum. At the lowest part of the

swing the energy is entirely kinetic ;
at the highest part it is entirely

potential ; and, in intermediate positions, it is partly kinetic, partly

potential.

A somewhat more complex example occurs in the transmission of

a message by telephone. There is first the energy of vibratory

motion of the air when the sound is produced. This vibratory

motion is communicated to the metallic diaphragm of the telephone.

But the diaphragm is magnetised by induction, and so its motion

causes alterations in the intensity of magnetisation of the magnet.

These alterations in the magnetisation produce electric currents in

the wire coiled round the magnet, and these currents produce similar
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alterations of magnetisation in the magnet of the receiving telephone,

and so similar motions of its diaphragm ensue. Consequently similar

sounds are heard at the receiving instrument.

By the consideration of such special examples we are led to the

conclusion that any form of energy may, directly or indirectly, be

changed into any other. Many evidences of this will appear in

subsequent chapters.

10. During all its changes and transferences one thing is evident

regarding the energy in the universe the total amount of it is

unalterable. This is made clear by the fact that strict
' mechanical

equivalents' of heat and the various other forms of energy are

obtainable (Chap. XXV.). Energy, like matter, possesses the property
of CONSERVATION. The swings of a pendulum, which has been set in

motion and then left to itself, gradually die away, and finally vanish.

But if no energy were lost because of the communication of motion

to the air, and if none were lost because of friction at the points of

support, or because of vibrations set up in the supporting framework,

etc., the motion would go on for ever. That is to say, the energy
communicated to other bodies up to any instant, together with the

energy still possessed by the pendulum at that instant, is equal in

amount to the original quantity. And the same is true of any other

system. Therefore, since it is conserved, we must regard energy as

having real existence.

11. A question of the deepest importance to mankind arises in

connection with the transformation of energy. Are all forms of

energy equally transformable ? When energy is changed from one

form to another, can it with equal readiness be changed back again
into the original form ? If not, it necessarily follows that the whole
amount of energy in the universe will gradually assume that par-

ticular form which is least transformable. Observation and experi-

ment have shown that there is one form into which all others

are gradually and permanently changing; and that form is the

energy of molecular motion known as heat. But there is a constant

tendency towards diffusion of heat, so as to produce uniformity of

temperature ;
and when uniformity of temperature is arrived at, no

mechanical work can be produced from the heat. The total amount
of energy in the universe will be the same as before, in accordance

with the principle of conservation ; but none of it will be available

for the production of mechanical work. This principle of the loss

of availability of energy is technically known as the principle of

DISSIPATION, or (preferably perhaps) DEGRADATION of energy.

Examples of degradation of energy occur everywhere in nature.

No stone falls from a cliff, no storm arises or ceases, no flash of
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lightning or peal of thunder occurs, no wave breaks upon the shore,

without a diminution of the possible amount of useful work obtain-

able for man by natural processes.

In accordance with this principle, potential energy of visible

portions of matter tends towards a minimum value, i.e., tends as far

as possible to take the form of kinetic energy. But further con-

sideration of this subject must be deferred in the meantime.

12. Nothing which is not either matter or energy is conserved

at least, in the same sense as that in which we assert conservation

of these things. Matter and energy are both signless quantities.

We might assert conservation of a quantity which may be positive

or negative, provided that, when a new positive amount of it is pro-

duced, an equal negative amount necessarily appears. In this case

the total algebraic sum of the quantity is constant. But if we

regard either the positive portion of it or the negative portion of it,

we find that the amount of either portion may be perfectly arbitrary ;

and this is not the sense in which conservation is asserted of matter

and energy.
. In the new sense alluded to, we speak of the conservation of

momentum (Chap. VI.), and sometimes even of the conservation of

electricity.



CHAPTEE II,

THE METHODS OF PHYSICAL SCIENCE.

13. THE whole body of scientific knowledge has been obtained by
one or other of two methods observation or experiment : nor can

strict knowledge be obtained in any other way. The first scientific

investigations ever made must have been of a purely observational

type, and were very probably astronomical in their nature. In

making observations, we notice the positions of objects and the

sequence of events ;
and we attempt, then, to make out relations

among them. In this way arose the still-extant grouping of the

stars into various constellations, and greatest perhaps of . all

examples the discovery by Kepler of the laws which regulate the

motions of the planets. But, when we alter at will the condi-

tions attending certain phenomena, so as to discover the conse-

quent alterations produced in the phenomena, we are said to ex-

periment. It is true, indeed, that we cannot always draw a hard

and fast distinction between observation and experiment. Thus,
in calculating the speed of light from observations upon the

satellites of Jupiter, although we do not ourselves alter any con-

ditions, yet we purposely take advantage of alterations which occur

naturally.

By such means we first of all obtain mere series of fads often

without any mutual connection whatsoever, and, not infrequently,

so grouped as to suggest false relations. The next duty of the

scientist is to group these isolated data after a definite system, to

co-ordinate the facts with the object of subsequently discovering the

true relations which subsist among them ; and the greater the

power of the observer to detect real resemblances and essential

differences the sooner will his ulterior object be attained.

The question of cause and effect next arises. Of two phenomena
which appear successively, and no one of which appears without the

other, that one which is first evident is usually called the cause of

the other, which is said to be its effect. But, obviously, great care
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must be taken to avoid any error in such an assertion, for there may
be many sources of mistake. In the first place, it is conceivable that

two phenomena might appear in invariable succession the one to

the other, and yet the true explanation might be that they had a

common cause, and were not otherwise connected. The flash of

forked lightning and the sound of thunder occur successively ; but

the sound is due to the explosive expansion of the air heated by the

passage of the electricity, while a portion of the light is also caused

by this explosive expansion, which compresses the adjacent layers

so suddenly as to render them luminous by the excessive heat so

developed. Again, the occurrence of one event is frequently neces-

sary, in order that we may perceive another between which and the

former there is no connection whatsoever; and, frequently, the

effect becomes evident before the cause is noticed. Still further, we
observe that events sometimes occur simultaneously. Thus, tornadoes

are often due to the sudden heating of large portions of the atmo-

sphere by means of the latent heat given out on rapid condensation

of vapour. But the condensation of vapour and the evolution of

latent heat occur of necessity at one and the same instant, so that

we might with equal propriety refer the tornado to either event as a

cause.

In nature there is an apparently endless series of causes. Each

event is the cause of another, and was itself produced as the conse-

quence of a preceding event. When a large mass of cloud intercepts

the rays of the sun from the underlying atmosphere, the air grows

colder, and as it grows colder it contracts. This causes an inrush

of air from surrounding regions, which well-known result is expressed

by the popular phrase that the cloud or the rain ' draws ' the wind.

The effects of this motion might be traced out endlessly if our senses

were sufficiently acute and our powers sufficiently universal ; and

so also the various motions preceding the motion of the cloud might
be traced.

14. Among his other duties, the physicist has to undertake the

investigation of the effects which result from physical conditions.

Such an investigation is comparatively simple. He has only to

make certain that the effects which he observes are not due to any
unnoticed conditions. The converse problem the investigation of

causes is not by any means so simple. The investigator must first

determine the various physical conditions which actually obtain,

and he must then find out which of these, if any, are essential to

the production of the phenomenon. If three conditions are observed,

an experiment must be made in which all of them are present, in

order to make it certain that the result really follows. Then three
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experiments must be made with the three pairs of conditions.

Three more must then be performed with each condition present
alone. Lastly, it may be necessary to make another experiment
in the absence of all the conditions. In all, eight experiments

may be necessary when there are three conditions. If four con-

ditions are present, one experiment with all the conditions present,
four with three conditions, six with two, four with one, and one

with none, may be required in all sixteen experiments. With
one condition only, not more than two experiments are necessary,
and the number is doubled for every additional condition introduced.

If only ten conditions existed, more than a thousand experiments
would be necessary to completely exhaust all the possibilities.

Obviously, science could make little progress were such immense
labour a necessity. Fortunately it is not. Past experience and

natural instinct indicate to the experimenter the direction in which

truth lies, and thus he is often enabled to take a short road to the

end in view.

15. One great means by which labour is reduced is the employ-
ment of a suitable and probable hypothesis. Certain facts are

known, and a hypothesis is framed regarding their explanation.
The greater the number of phenomena which a given hypothesis

can explain, the greater is the likelihood of its truth. When only
some facts fall in with the assumptions while others do not, some
modification of the hypothesis must be made. But when new
modifications have to be made for every new requirement, it is time

to abandon the hypothesis and seek for another and more probable
one. A good hypothesis must explain all the facts for the elucida-

tion of which it was framed. It should also explain other known
facts, and facts which subsequently become known. But, in such a

case, it is customary to speak of it as a theory. Above all, a good

theory should lead to the prediction of previously unknown facts.

It sometimes happens that different theories are each sufficient for

the explanation of known facts. One theory may explain certain

phenomena more easily than another can, while in the explanation
of others it is more laboured. The logical consequences of the two
theories must then be worked out as far as possible, and it will

usually be found that at one or more points each leads to an opposite
conclusion. Here experiment must step in to determine which
conclusion is correct, and so to decide between the two theories.

This experimental investigation is termed a crucial test. Very
prominent examples occur in the theories of heat and light.

The tendency of scientific investigation in the present day is

towards the formation of dynamical explanations of all phenomena
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towards the production of theories in which all purely physical

phenomena are explained in terms of matter, and the energy which
is associated with it.

Mathematical theories form an important class in which the

mathematical consequences of the fundamental assumptions are

rigidly worked out. When the postulates are merely expressions of

known facts, the consequences of such theories may be regarded as

strictly true ; but in making such a statement, we must remember
that all our knowledge is only approximate, being limited by the

imperfections of our senses and our instruments, so that the above

expression,
'

strictly true,' means merely that we cannot detect devia-

tions from the truth. The theory of gravitation is of this kind, and

it furnishes us with one of the finest examples of prediction. From

irregularities in the motion of the planet Uranus, Adams and

Leverrier were led to foretell the existence and indicate the position

of the previously unknown planet Neptune.
In other mathematical theories there is merely a partial experi-

mental basis; for example, the dynamical theory of heat or the

undulatory theory of light. Again, it is possible to work out mathe-

matical theories of phenomena in which we know that something
moves ; but we may not know what is moving or how the motion

is propagated. The theories of heat-conduction and of electro-dyna-

mics are prominent examples.
As knowledge advances theory must cease. Some theories will

be shown to be false, while the truth of others will be confirmed,

in which case they of necessity vanish as theories.

A very important scientific method, which is in essence hypo-

thetical, is known as the argument from analogy. When we

perceive resemblances between different physical systems or pro-

cesses, we say that they are analogous ;
and when any new fact is

discovered regarding one of the systems, we are led by analogy to

look for something similar in the others. The principle is of extreme

importance in experimental work, as it indicates a promising direc-

tion for research, and so prevents aimless and often fruitless labour
;

and, further, the failure of an analogy may be as instructive as its

success. There are many analogies between the phenomena of

sound and of light ; but there is nothing in sound which corresponds

to polarisation in light, and the distinction is of fundamental im-

portance.
Another extremely important aid to research is derived from the

condition for stable equilibrium. This condition may be expressed

as follows : A system is in stable equilibrium, under given physical

conditions, when any small variation of one or more of these pro-
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duces other variations which would themselves, as causes, produce

changes opposite to the first.

[It is easy to see that this statement does express the condition

for stable equilibrium. For, if one variation produced another

variation which caused further variation of the first kind, this

additional variation would cause more variation of the second kind,

and so on reciprocally. Therefore the variation, once started, would

constantly increase, or, in other words, the presumed state of

equilibrium is unstable.]
The equilibrium of a body supported by the hand affords a ready

illustration. Increased pressure of the hand upon the body causes

an upward motion of the body. Conversely, the independent com-

munication of upward motion to the body diminishes the normal

pressure between the hand and it.

Another example is furnished by water, which is physically

stable (under ordinary circumstances) below its maximum-density

point, and which, at temperatures below its maximum-density point,

contracts when the temperature is raised. Hence, in accordance

with the above principle, we can assert that sudden diminution of

volume caused by the application of pressure will produce a fall in

temperature. Again, sudden elongation heats indiarubber; there-

fore the heating of the stretched indiarubber makes it shrink. Sir

W. Thomson has proved experimentally that both these results are

true. We shall see subsequently that they follow as consequences
of the dynamical theory of heat.

16. In all observations, alike of natural processes and of experi-

mental results, errors of observation are almost certain to arise.

Such inaccuracies are as likely to be in excess as in defect, and are

much more likely to be small than to be large, while a very large

error will practically never occur at all unless the method of obser-

vation is an extremely objectionable one. To get rid of these

errors we must make a sufficient number of independent observa-

tions. In any one observation we do not expect the result to be

correct ; but there is a certain numerical quantity, called the pro-
bable error, such that the actual error is as likely to be greater than

it as to be smaller than it. If each observation is made under con-

ditions precisely similar to those of another, the probable error

of each is the same. In this case we simply take the arithmetical

mean of all the observations, and this gives the result which is

most likely to be near the true value. But if each observation is

not made under precisely similar circumstances, the probable error

of each will in general be different, and its value will be known for

each from the known experimental conditions. The most probable
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value is now found by the method of least squares. As a simple

example, let us take the case of three independent observations of a

quantity #, which gives the results x = a, x = b, x c: and let the

probable error of b and c be - th and th of that of a respectively. If

we now multiply the second and third equations by n and m respect-

ively, we get x = a, nx = nb, mx= mc, where the probable error of

the right-hand member of each equation is the same. Multiply again

by n and m as before, and we get x= a, n-x = n2
b, m~x = ni-c. These

equations give

_ a + n2b +- m-c
'

x _ - - - - j

1 + n- -f- m2

a value which makes the sum of the squares of the errors of the

original equations a minimum. If the equations contain more than

one quantity subject to error, the same method applies, for the

number of observations will usually be much greater than the

number of unknown quantities.

In addition to errors of observation there may be errors which

tend always in one direction, so that the result obtained is either too

large or too small. Such errors are due usually to the instrument

or to the method of observation used, and are generally termed

instrumental errors. Under this heading may be included errors

due to peculiarities of the observer, and the correction to be applied

is termed the personal equation. When only comparative values

of a quantity under different circumstances are required, such errors

frequently affect each observation alike, and so may be neglected.

But, in general, they must be eliminated by varying the instrument

and the observer and combining the results as above.

17. Most frequently in physical inquiries we have to investigate

the variations of some quantity consequent upon the variation of

another. The experiment may often be so arranged as to give a con-

tinuous record of the mutual variation of the two, as in the case

of the self-registering thermometer and similar instruments ;
or

even a simultaneous and continuous record, as in the case of the

rise of water in the wedge-shaped space between two vertical glass

plates ( 122). But, more generally, the results of a few separate

experiments are given, each of which records one definite value of

the one quantity corresponding to one definite value of the other.

From these detached results the law connecting the variations of the

two, or, rather, an approximate law must be found, the approxima-

tion to be so exact that the result given by the law for intermediate

values of the quantities shall not differ from that which may be

determined afterwards by experiment by an amount greater than
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the possible error of observation. Such a relation is termed an

empirical law, and the formula expressing it is called an empirical
formula.

The formula

y= a + b (a? -BO) + c (x
- x )

2
-f ----

,

is frequently adequate for the close representation of many experi-

mental results. The constant a is the observed value of y when
x= x

; and the values of the constants &, c, etc., are found from a

series of particular equations obtained from the above by giving x

and y simultaneously-observed numerical values. Frequently no

more than three terms are necessary. For example, the values of

x and y which are contained in the table below are accurately

represented by the formula

T/
= 1+2 (a -1) + (z-l) 2

,

or by
y = 9 + 6 (-3) + (x -3)2, etc.

If we have obtained by experiment n values of y corresponding to

n values of x, we may use as an empirical formula the equation

(given by Laplace) :

-- -1

x -
XL (xl

- x
2)(Xl

- a?8) . . . . (ajj -xn)

This obviously gives y= yv when x= x
lt etc., so that all the observed

values are accounted for.

When values of y corresponding to equi-different values of x are

observed, the symbolical equation

is specially useful. Here m means ' the numerical value of y,

which stands mth in the observed series'; Am=m+T--m; and

A 2m= Am-j-1- Am. Am, etc., are called the '

first differences,'

and A 2
m, etc., ?re called the 'second differences' of the observed

values of y. For example, let the values of x be the natural num-
bers, while the values of y are the squares of these. From the

tabulated results :

x 1234567
y 1 4 9 16 25 36 49

Ay 3 5 7 9 11 13

A 2
?/ 22222



16 A MANUAL OF PHYSICS.

we get, by the formula, for the sixth observed value of y the quan-

tity 6=3+3 =3+3A3+3A 23=9+3x7+3x2= 36; Or 6 = 4+2=

4+2A4~+A 24= 16+2x9+2= 36; and so on.

When the observed values are sufficiently close together, such

formulae enable us to find intermediate values with considerable

accuracy, and also to find values altogether outside the experimental

range for a short distance
; but, if pushed too far, the formulae will

give values differing more and more from the truth.

jj;
Instead of seeking for an empirical formula, we might plot a

FIG.

curve, the abscissae of which represent the values of the quantity

to which we give arbitrary values, while the ordinates represent the

values of the quantity whose variation we observe. The points so

obtained will not generally lie on a smooth curve because of observa-

tional errors, but a curve drawn freely through them, leaving on

the whole as many points on one side of it as there are on the other,

will be fairly free from such inaccuracies, and will generally give a

better approximation to the truth than the actual points themselves

give. This is known as the graphical method, and is largely used
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by experimentalists. For example, the square of the time of oscil-

lation of a simple pendulum is proportional to the length of the pen-
dulum. Hence, if we make the abscissae represent lengths while

the ordinates represent the squares of the periods of oscillation, we
should get a straight line passing through the origin. In Fig. 1,

which is drawn from the results of actual experiment, it will be

seen that the points, while they all agree very well with each other,

do not give the proper ratio of the quantities. The straight line is

inclined at the proper angle. From the close agreement of the

different results, we infer that there is little error of observation,

but the wrong inclination of the line shows that there must
be an instrumental source of error. If a series of experiments
were made at parts of the earth's surface where gravity had

sensibly different values, we should get a series of straight lines all

passing through the origin, but all inclined at different angles. All

such series of curves may be regarded as contours of a surface, and
this subject is of such importance in physics as to merit discussion

in a separate chapter.

Very often the form of the curve obtained by the graphical method
indicates at once a suitable empirical formula.



CHAPTEE III.

THE THEORY OF CONTOURS, AND ITS PHYSICAL APPLICATIONS.

18. THE nature of any quantity is completely known when it is

understood ivhat units are involved in its measurement, and how

they are involved. Thus a speed involves the unit of length

directly > and the unit of time inversely ;
an acceleration involves

a length directly, and the square of a time inversely. But, when

dealing with extension, we have only to consider the unit of length.
We say that the extension under consideration has one, two, or

three, etc., dimensions, according as the unit of length is involved to

the first, second, or third, etc., power. A line has only one dimen-

sion, for only one number, with the proper sign attached, is required
to completely specify the relative position of two points on the line.

A surface has two dimensions, for two directed lengths define the

position of a point on it with reference to any other point taken as

origin. Thus we speak of one point on the surface of the earth as

being so much north or south, and so much east or west of another.

Three directed lengths determine the relative position of two points

in space, that is, in extension of the third order. Thus we speak of

the length, breadth, and thickness of a solid.

It must be observed that three lengths are not necessary. One

of the given conditions must be a length, but the others might be

angles. For example, instead of saying that one mountain-top is

so far north or south, so far east or west, and so much higher or

lower, than another, we might give the distance between the two

peaks and their relative altitude and azimuth.

The intersection of any surface, which has a constant charac-

teristic, with the surface of a solid is called a contour-line. A good
illustration is furnished by the contour-lines in an Ordnance map.

Any such line is the intersection of a surface, all points of which

are at a constant height above sea-level, with the surface of the

solid earth. An Ordnance map gives a very good idea of the dis-

tribution of places on the earth's surface as regards height, as well
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as with reference to latitude and longitude, and the information is

more and more minute as the number of lines is greater. In other

words, contours enable us to represent on a plane surface the mutual

relations of three quantities.

This gives the key to the great importance of the theory of con-

tours in physical science. For, if the physical condition of a substance

is completely denned when the simultaneous values of three of its

properties are given, we can construct a solid the surface of which

represents all possible conditions of the substance just as we can

construct a model of the earth's surface in terms of latitude,

longitude, and height above sea-level.

19. We may extend the above conception, and state, generally,
that the contour of an object o/n dimensions, existing in extension

of the (n+l)
th

order, is its intersection with an object of n dimen-

sions at every point of which some quantity has a constant value.

It is, therefore, of (n 1) dimensions.

Since, in extension of the (n+l) th order, we may have objects of

less dimensions than the nth
,
we might make the further develop-

ment that in extension of the (n+l)
th order we may have contours

of all positive dimensions up to the (n
-

l)
th inclusive. Indeed,

there is no reason why we should not consider -contours of n dimen-

sions in space of (n+ 1) dimensions. Hence, in ordinary extension,

we may have point, curve, and surface contours. The contours of

a curve are points ;
of a surface, curves ;

of a solid, surfaces ; of

a four-dimensional object, solids ;
and so on.

The properties of four-dimensional extension, or even of exten-

sion of the nih
order, can be treated mathematically ; but, from

want of experience, it is impossible to imagine the nature of such

extension.

20. By means of contour-points the nature of curves may be

exhibited in diagrams consisting of straight lines only. For we
may intersect a given curve by curves, along each of which some

quantity has a constant value, and then project the points of inter-

section upon any straight line.

Consider first a plane curve, and, for convenience, let its plane be

taken as that in which two co-ordinate quantities, x and y, are

measured in perpendicular directions from the same origin. Let

fn (
x

i y) foe the equation of the given curve, where the suffix

denotes the degree of the equation. The equations to the curves

along which some quantity, say c, is constant, may be written in the

general form, n (x, y, c)
= o. In the different curves of the system

c has different values. As a particular example, the curves might
be circles of different radii. Again, the equation might be

22
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<i (y> c)
= o, which represents a series of lines parallel to the axis of

sc. This is the simplest case which we can consider, and, at the

game time, the most useful. The curves in Figs. 2 and 3 are inter-

sected by lines parallel to the axis of x, and the points of inter-

section are projected upon the axis, and are designated by numbers
which give the various values of y corresponding to the given values

of x. If the curve be continuous, a maximum or minimum value

of y exists between two equal values. It is a maximum if y first

increases and then diminishes as x increases continuously from its

least value corresponding to the given value of y. It is a minimum
if y first diminishes and then increases. The steepness of slope is

shown by the closeness of the contours for equal increments of y,

and its .direction is shown by the order in which the values of y
occur as regards numerical magnitude when x increases.

FIG. 2. FIG. 3.

In the case of tortuous curves we may obtain the contours most

conveniently by cutting the curve by surfaces over which some

quantity is constant. In particular, these surfaces may be planes

perpendicular to the z axis, in which case the equations are of the

form/j (z, c)
= o.

The position of a moving point in space is obviously represent-

able by a tortuous curve. Its position at any time can be got from

the curve if the value of the time in terms of one of the co-ordi-

nates, say z, is known ;
for we should then only have to cut the

curve by the plane \fn (z, t)
= o, where t represents the time, and

ifn is a functional symbol, showing that the equation is of the first

degree in z, but may be of any degree in t. [This condition is

rendered necessary by the fact that the point must be in one definite
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position at a given time, but may occupy the same position at

different times.] If a number of such curves are simultaneously
traced out in space by moving material points, we can obtain the

diagram of configuration of the material system at any time by

cutting the curves by planes corresponding to that time, and pro-

jecting the points of intersection upon the parallel co-ordinate plane.

It is evident that, in general, the plane which corresponds to a

definite time will be different for each curve. The disadvantage sd

entailed may be got rid of by the employment of trilinear co-ordi-

nates to indicate the position of the point when the time is given;
If the curve be cut by any plane, the distances of the point of

intersection from three intersecting straight lines in that plane give
the a?, y, z co-ordinates at the corresponding instant. The value of

the time might be given by the distance of the plane from a fixed

plane parallel to it.

The curves which are, on this system, taken to represent the
;

FIG. 4.

positions of the points are not in general the actual curves traced out

by the points in their motion through space. But the diagram of

configuration obtained from them has the advantage of showing af

once the values of all the co-ordinates of all the points, whereas,

in the Cartesian system, this could not be done without projection

on all the co-ordinate planes. The triangles of reference, though

they may be similar, are not generally of the same magnitude. A;

difference in magnitude is necessary, in order to represent varying

values of the co-ordinates. In Fig. 4 the triangles are similar;

and equidistant, while the point a is fixed ;
hence the diagram re-

presents the linear motion of a point. In general there must be a

different set of triangles for each separate point whose motion is

to be indicated.

By the aid of such a diagram, the diagram of total displace-

ments
( 40) in a given time may be constructed. And by taking

the displacements in one nth part of the unit of time (n being
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indefinitely large), and magnifying them n times, the diagram of
velocities can be got. Similarly, the diagrams of accelerations,

forces, and so on, may be represented as the contours of curves.

The curves, from which the diagrams of velocities, etc., are obtained,

are, it is almost needless to remark, different from the original
curves which represent the positions of the moving points. In the
case of velocities, they are the hodographs ( 48) of the original
curves on this trilinear system of reference.

As another example of the use of tortuous curves, we may con-

sider two quantities, x and y, connected by the equation if = ax,
which gives ydy/dx= aj^ ( 30). We may now take dyjdx as a

third co-ordinate quantity, and so obtain a tortuous curve. For

example, if, in this case, y represents the time during which a body

FIG. b.

has been falling from rest under gravity, and if x represents the

space described from rest, the velocity acquired is represented by
the reciprocal of the third co-ordinate quantity.

21. If any curve be cut by planes parallel to that of (x, y), and

if the various points of intersection be projected on any one of these

planes, say z= o, the contour-points so obtained will evidently lie on

a definite line, and the line will be more accurately indicated in

proportion as the number of intersecting planes is greater and their

mutual distance is less. It will be given without any break of con-

tinuity by projecting every point of the curve upon the plane z o.

But such a line may be regarded as the intersection, by the plane
z = o, of a cylindrical surface whose generating lines are parallel to

the -axis and are drawn from the given curve to meet that plane.

Now this satisfies our definition of a contour-line, for it is the
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intersection of a given surface by a surface over which z is constant

(zero). A cylindrical surface supplies the simplest diagram of con-

tour-lines. The contours are all superposed in the diagram, but

are not in general conterminous. The only case in which they
would be conterminous is (Fig. 5) that in which the same values of

the x and y co-ordinates of a point on a curve correspond to different

values of z.

In the case of a non-cylindrical surface, no part of the contours

will be superposable in general. The contours of a hemisphere, for

example, are concentric circles (Fig. 6). And, just as, in the case of

contour-points, the steepness of slope of the curve is indicated by
the closeness of the contour-points on the #-axis for equal incre-

ments of ?/, so, in the case of contour-lines, the steepness of slope
of the surface is indicated by th6 closeness of the contour-lines for

FIG. 7. FIG. 8.

equal increments of z. The contours are closer when their radii

are large.

The contours of a right circular cone are also concentric circles,

but they are at equal distances apart for equal increments of .

22. As an example of a surface, the contours of which may be

used to indicate certain physical properties, we may consider that

one whose equation is

ft****!/*

If y represents the length of a simple pendulum, while x represents

the square of its time of oscillation, we know that z represents the

value of the acceleration due to gravity. The surface (Fig. 7) may
obviously be supposed to be produced by the motion of a straight

line which intersects the 2-axis and is always perpendicular to it,
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and which rotates uniformly about that axis while it moves at a

constant rate along it. The contours (by planes perpendicular to the

axis of &) are straight lines passing through the origin and variously
inclined to the a?-axis ( 17).

Again, the intrinsic equation of the circle is

S = &0,

where a is the radius and $ is the angle between the radius vector

-and the initial line. Hence the intrinsic equation of one involute

is

This involute is the one which meets the circle at the position

from which
<t>

is reckoned, and s' is measured along it from this

point. If we consider a to be the mass of a moving body, and
<j>

to

be its speed, s and s' are respectively its momentum and kinetic

energy. In Fig. S two circles, with their involutes satisfying the

above condition, are drawn. The curves may be regarded as the

contours of a right circular cone, together with an associated surface

which is formed so that its intersection by any plane parallel to that

of the diagram is an involute of the circle in which the cone is cut

by the same plane.

The acceleration and speed of a body falling under the action of

gravity, and the space passed over by it, are given by the known

equations ( 42)
a = g
v = V+gt
s = c + Vt + $fft*.

Hence these various quantities can be represented also by the

contours of the surfaces just considered, 'taking the place of 0, an#

g taking that of a in the former equations. The new terms which

.appear present no difficulty.

Again, in a thermo-electric circuit (Chap. XXVIII.), composed of

two dissimilar metals, the electromotive force E is given, in terms

of t the difference of temperature of the two junctions, by means of

the formula

Also the thermo-electric power e is given by the equation

Hence these quantities are also representable by means of the same

surfaces.

23. The contour lines which are most familiar to us are those
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formed by the intersection of level surfaces with the surface of the

earth. The line of sea-board is one such contour line. The numbers

marked upon maps or charts which give the height above, or depth

below, sea-level indicate contour-points. When the points are

taken sufficiently close together, and continuous curves are drawn

through points of constant height, we get contours, as in the

Ordnance Survey maps. Such a contour coincides very closely with

the contour-lines formed by level surfaces. They do not exactly

coincide because of the non-spherical shape of the earth, and because

of its rotation, etc. But the assumption that contour-lines of constant

level are lines of constant height over sea-level will not introduce

appreciable error, so long as the area on which they are drawn is

FIG. 9.

small in comparison with the whole surface of the earth. The
kinetic energy, which is acquired by a body in falling freely from any
point on one level line to any point on another level line is constant.

Suppose the earth to be entirely submerged underneath the

surface of water, so that we have only one region, and that a region
of depression below the surface of the water, to consider. If we

suppose further that the water is slowly absorbed by the solid matter

of the earth, regions of elevation will be formed gradually, until

finally we shall have again only one region, and that a region of

elevation, Before a region of elevation is formed, we have a

summit appearing above the water-level; and when the water

subsides out of a region of depression, we have a lowest-point or

imii appearing.
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The number of regions of elevation and depression may vary in

two ways. Two regions of elevation may run into each other as

the water sinks. The point where they first meet is termed a jimss

or col (see Fig. 9
; Pj, P2 , etc.). Again, a region of elevation may

throw out arms which run into each other, and so cut off a region
of depression. The point where they first meet is termed a bar

(Blt jB
2 , etc.). The contour-line for a level immediately underneath

that corresponding to the bar has a closed branch within the region
of depression cut off. Thus the closed curve at I4 is part of the

contour-line UV. In the map of such a country, a pass occurs

at the node of a figure-of-eight curve (or out-loop curve, as

Professor Cayley has termed it), while a bar occurs at the node

of an in-loop curve. If, in the diagram, the Ps represented
bars and the Bs represented passes, the map would be that of an

inland basin
;
so that, in the map of such a country, a pass is repre-

sented by the node of an in-loop curve, and a bar corresponds to

the node of an out-loop curve. If there were any advantage in

having passes and bars always indicated by the node of the same
kind of curve respectively, this could be attained by affixing the

positive sign not constantly to the region on the same side of the

level surface but to the region towards which (or from which) the

surface is moving at any instant.

As a particular case, two regions of elevation may run into each

other at a number of points simultaneously. Of these points, one

must be taken as a pass and the others as bars. Singular points

may also occur, when, for example, three or more regions of eleva-

tion meet. Such points are called double, treble, etc., passes.

Multiple bars may similarly occur.

Before a pass can be formed there must be two summits, and for

every additional pass there is another summit. Thus the number
of summits is one more than the number of passes. So also the

number of imits is one more than the number of bars.

Slope-lines are lines drawn at right angles to the contour-lines ;

and, evidently, the steepness of a district is indicated 011 a map by
the closeness of the contours. Two kinds of slope-lines are of

special importance. These are the slope-lines drawn from summits

to passes or bars, and from passes or bars to imits. The former can

never reach an imit, and are termed water-slieds. The latter can

never reach a summit, and are called water-courses.

A perpendicular precipice is indicated on a chart by the running

together of two or more adjacent contour-lines (F). An over-

hanging precipice is indicated by the lapping of the upper-level line

over a lower-level line.
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24. Since we can represent the physical state of a substance with

regard to three quantities by means of a surface, it follows that we
can deduce from the contours of the surface the nature of the varia-

tion of the properties of the substance the methods being identical

with those of the preceding paragraph. Let us take, as a particular

example, the thermo-dynamic surface which represents the state

of water-substance with regard to volume, pressure, temperature,

entropy, and energy (Chap. XXV.). If we construct the surface

in terms of any three of these quantities, the value of the remain-

ing two at any point of the surface may be given by contour-lines.

The model of the surface, having volume, entropy, and energy
measured along the axes, has been constructed by Clerk Maxwell,
and is explained and figured in his '

Theory of Heat.' We shall

FIG. 10.

consider the surface representing directly volume, temperature, and

pressure. This surface was first studied by Professor James Thomson.

Suppose the surface to be cut by a plane of constant pressure, sayPlf

We thus get a contour-line, the general nature of which is indicated

in Fig. 10. At a low temperature the volume is small, the sub-

stance being in the solid state. As the temperature rises, the substance

expands until liquefaction occurs. The volume then diminishes

without rise of temperature, until the substance is completely

liquefied. The temperature then rises while the volume diminishes,

until the maximum-density noint is reached. After this, expansion

accompanies rise of temperature up to the boiling-point. At this

stage the volume rapidly increases, while the temperature remains

steady until the substance is entirely in the gaseous state. Beyond
this point both increase together. The contours for slightly less

pressures (P2 , P3) are approximately parallel to P15 but lie entirely
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above it
;
the reason being that at a given temperature the volume

increases as the pressure diminishes, while the freezing-point is

lowered, and the boiling-point is raised, by pressure. The freezing
and boiling points approach, and finally coincide as the pressure
diminishes. At lower pressures the substance changes directly froni

the solid into the gaseous state. The line AB in the figure above
indicates the triple-point temperature, that is, the temperature at

which portions of the substance in the three states solid, liquid,
and gaseous can exist together in equilibrium. The increase of

volume on vaporisation continually diminishes as the pressure is

raised, until finally (at .C) the process of vaporisation ceases. The

temperature at which this occurs is called the critical temperature'.
There may also be a critical temperature for the solid-liquid con-

dition.
.
That is to say, there may be a temperature belo^v which

no amount of pressure will lower the freezing-point sufficiently to

admit of liquefaction.

The contour-lines which are obtained by cutting the surface by
planes of constant temperature are called isothermals. If the tem-

perature be above the triple-point, but below the critical-point, while

the substance is in the gaseous condition, increase of pressure is

accompanied by decrease of volume, until the liquefaction com-

mences. At this stage the volume decreases without variation of

pressure, until all the substance is liquefied. After this, a very

great increase of pressure is required to produce a very small

decrease of volume. Two such isothermals (not those of water-

substance, see 278) are represented in Fig. 11. The form

of an isothermal below the triple -point shows that the solid

state is intermediate between the gaseous and the liquid states.

As the pressure increases the volume decreases, until the point
of sublimation is reached. The pressure then remains constant

while the volume diminishes, until all the substance is solidified,

Then the volume decreases slowly on increase of pressure, until

liquefaction commences. Here the pressure becomes constant,

while the volume diminishes until all the ice is melted
;

after

which the volume again decreases slowly on rise of pressure.

Thus, here are two kinds of isothermals having their transition-

stage at the triple-point temperature. As already indicated, the

triple-point pressure occurs at the transition between two kinds of

lines of equal pressure, for the liquid condition ceases to be possible

at higher pressures. The form of the isothermals beyond the

critical temperature is indicated in Fig. 11. It is quite possible

that, as Professor James Thomson has suggested, the true form of

the isothermals below the critical temperature does not include a
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FIG. 11.
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part parallel to the volume-axis, but that it has a waved form, as

shown in the diagram. Part of the waved portion represents an

unstable state, since pressure and volume increase together. Thom-
son made this suggestion in order to avoid discontinuity in the curve.

The lines elt e% are lines of constant energy, and those marked

0i 02 03 are lines ofconstant entropy.
25. It is only when the temperature considered happens to be

one corresponding to a contour in the diagram that the relation of

pressure and volume can be accurately found from the above

diagram. This defect may be got rid of by the use of trilinear

co-ordinates; and, in addition, the variation of a fourth quantity
can be shown. In illustration of this we may take the case of a

perfect gas, for which we have the equation
vv = lit,

where p, v, and t represent respectively the pressure, volume, and

FIG. 12.

temperature, and R is a quantity which depends on the nature of

the gas. The triangle of reference is made equilateral in Fig. 12.

The ratios of the distances of a point from the vertical and the

inclined sides of the triangle are the ratios of the temperature,

pressure, and volume respectively. The contours for different values

of R are shown in the figure, and the equation shows that they are

hyperbolas, with vertical and horizontal axes. No part of the

hyperbolas outside the triangle of reference has any physical mean-

ing; for, in that case, pressure, volume, or temperature (or any
two, or all, of them) would be negative, which is impossible in the

case of a gas. Evidently pressure, volume, and temperature are

continuously represented for any one gas.
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Of course, when we wish to find the absolute values of the co-

ordinate quantities, we must use the equation which connects them.

This is not necessary when we use Cartesian co-ordinates.

The figure obviously represents the contours of a surface by planes

parallel to the plane of the diagram, which may be looked upon as

that corresponding to zero value of R. When li is zero, the

hyperbola becomes a pair of straight lines which coincide with the

sides AB, AC, of the triangle of reference. When E is infinite, the

side BC is part of the corresponding hyperbola. All parts of lines

through B and C perpendicular to the plane of the diagram lie

upon the surface. These lines separate the parts of the surface

which correspond to real physical states from those which do not.

Outside the triangle the surface evidently overhangs the plane of

the paper.
The value of R being given, let P (Fig. 18) be the point which gives

the proper ratios of p, v, and t. Draw PM, PN, parallel to the sides

of the triangle. Since the asymptotes of the hyperbola are parallel

to these sides, it follows that that part of the tangent at P, which is

intercepted by the sides of the triangle, is bisected at the point of

contact. Therefore AM = MQ, and AN = NR. Now the compres-

sibility k of a gas is given by the ratio dv/vdp, where dv is the

small alteration of volume produced by the small change of pressure

dp. Vutdvldp = MQIMP = NPIMP = vlp. Hence k = 1/p, that is,

the compressibility of a perfect gas is the reciprocal of the pressure.

Similarly it can be shown that the expansibility is proportional to

the absolute temperature.
The work done during isothermal expansion can also be found

from the diagram. The position of the point P gives the mutual
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ratios of p, v, and t ; but since t has a known constant value, the

actual values of p and v are also known. Hence PN (=p cosec

BAG) is a known function of v. If P move to P', the area

PNN'P' =/PNdv ( 34) = cosec. BACfpdv is a known multiple

of the work done.

; 26. The applicability of, the method of contours to other physical

problems is evident. Electric stream-lines and equipotential-lines

may be regarded as contours of a surface, and the number of equi-

potential lines which cross unit length of a stream-line may be used

to indicate the strength of the current. So also air-current lines and

isobars, isothermals and flow-lines of heat, etc., are rectangular

systems of contours.



CHAPTEE IV.

VARYING QUANTITIES.

27. THOUGH every quantity, whatever be its nature, has magnitude,
no quantity can be said to be large or small absolutely. When we

speak of the size of any body we mean its size relatively to the size

of some other body with which we compare it. A yard is large

if we compare it with an inch ; it is small when compared with a

mile. In the former case the number which represents it is more

than 60,000 times larger than the number by which it is represented
in the latter case. A mere number is therefore useless as regards
the statement of magnitude, except when accompanied by a clear

indication of what the thing measured is compared with. The

quantity in terms of which the comparison is made is called the

unit, and the number which tells how often this unit is contained

in a given quantity is called the numeric.

All dynamical quantities may be made to depend upon three units

only. These are the units of mass (quantity of matter), length,

and time. Thus speed, being measured by the distance traversed

in a certain time, depends upon the unit of length directly,

and upon the unit of time inversely. Hence by doubling the

unit of length we double the speed unit, and therefore halve the

numeric of any given speed ; whereas by doubling the unit of time

we halve the speed unit, and therefore double the numeric of a

given speed. Again, acceleration, being measured by the increase

of speed in a certain time, depends upon the unit of speed directly

and upon the unit of time inversely ; that is, it depends directly

upon the unit of length and inversely upon the square of the

unit of time. The manner in which the fundamental units

are involved in any quantity determines the dimensions of that

quantity. If M L and T represent the units of mass, length, and

time, the dimensions of speed and acceleration are indicated by
the symbols [LT"

1
]
and [L2

7 - 2
] respectively, and the dimensions

of energy ( 7) by [ML
2T- 2

].

3
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28, When two quantities are so related that any change in the

numerical value of one of them is accompanied by a change in the

numerical value of the other, each quantity is called a function of

the other. If to one value of the first there corresponds one, and

only one, value of the second, the second is called a single-valued
function of the first ; but if to a given value of the one there

correspond more than one value of the other, the latter is said

to be a multiple-valued function of the former. For example,
a;
2 4-2a?-8 is a single-valued function of x; since, if we give x any

value, there will be one corresponding value of a;
2
-f 2# 8. On the

other hand, a? is a double-valued function of #2
+2a? 8; since, if

we give any value to #2
-f2# 8, we find that x has in general two

distinct values. Again sin a? is a single-valued function of x, while

sin" 1^ (the angle whose sine is x} is a multiple-valued function of #,

The relation between the two quantities can be expressed by
means of an analytical equation or by means of a curve, as is indi-

cated in 17. The general expression of the relation may be given
in the form

=/().

where the quantity y is regarded as being dependent upon x, and

the equation simply reads '

y is some function of #.' The function

denoted by / may be of various kinds it may be algebraical

(e.g., y = ax+ bx2
), trigonometrical (e.g., y = sin a?-fcos x), ex-

ponential (e.g., y= a*), etc. ; and under each kind there may be

a number of different forms, e.g., a 'series of powers,' a 'product
of tangents,' etc.

In the above formula x is supposed to be that quantity the value

of which is arbitrarily varied. It is therefore called the independent

variable, while y is termed the dependent variable.

29. If y varies in value uniformly when x varies uniformly, the

quotient of any increment of y by the simultaneous increment of x

is constant, however large or small either of the increments may
be. For the condition means that y is proportional to x, or to x

+ a constant, say y=~kx-\- c where k and c are constants. Hence
if y changes from y1 to y2 when x changes in value from x

l
to x.2

we have yl
= kxi -}-c, y2=kx2+c, and therefore y2 -yi = k (x.2 x^,

which proves the above statement, since a?2 x\ may have any value

we please. If the values of y and x be represented as the ordinates

and abscissae respectively of a curve, we see that the constant c is

represented by the length OA (Fig. 14) (since it is the value of y when
x= o), that simultaneous values of x and y are represented by points

on the line AB, and that k is represented by the tangent of the in-

clination of that line to the #-axis ; hence, by this graphical process
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also, the truth of the statement is evident. When they are thus

related, y and x are said to be linear functions of each other.

But when y is not a linear function of x, it is evident that the

ratio of their simultaneous increments depends upon the absolute

values of these increments. In the former case that ratio denoted

the rate at which y varied when x varied ; but, in the case now

supposed, it does not in general give the true value of that rate.

It is of extreme importance that we should have a means of finding

the true rate of variation whatever be the nature of the relation

connecting the two quantities. Let A'B' (Fig. 14) be the curve

which represents y as a function of x, and let P be the point at

which we wish to find the rate of variation of y when x alters.

Take another point P' on the curve, and let x' and y' be the values

of its co-ordinates. It is obvious that in general the ratio of y' y
to x' x does not give the true rate. It gives instead the rate of

FIG. 14.

variation corresponding to the line joining P and P'. But the line

PP' coincides more and more nearly with the curve as P' approaches
to P; and we can take P/

closer to P than any assigned finite

quantity however small, so that the difference in direction between

the line and the curve can be made smaller than any assignable

angle. Ultimately when P' is infinitely near to P the rates of

variation corresponding to the curve and the line are identical.

Hence, geometrically, the true rate at any point is given by the

tangent of the angle which the line touching the curve at that point
makes with the #-axis ; or, analytically, it is given by the ratio

f y'
~ y to x' x when x' - x is made indefinitely small.

This method is only applicable strictly to the case of quantities
which have no sudden change in their rate of variation. But, in

32
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any such case, we can apply the method up to the point at which

the sudden change occurs, and also, separately, beyond this point :

and this is all that is required.

It is usual to write dy and dx instead of y' y and x' x when
these quantities are infinitely small, so that the symbol d means

the infinitely small increment (or
*

differential,' as it is usually

termed) of the quantity to which it is prefixed. In general. <///
d ,r

is a function of x ; so that, if the original relation is y=f(jc\ it is

usual to represent the quantity dyldf by the symbol f\x). and to

call it the first derived function of y with respect to x. We may
deal similarly with the relation yf'(x), and obtain the second

derived function which is indicated by /"(a:), and so on. It must

be carefully observed that dx and dy, being quantities of the same
kind as x and

//,
are subject to identically the same laws.

30. We shall now find the rates of variation of .certain func-

tions which will be of use subsequently; first of all, of rational

a /</'?) raical functions.

a and 6 being constants. We shall use the ordinary sign for a

limit, according to which J^j denotes the limiting value of the

T*V *

quantity to which the sign is prefixed when in that quantity we

put x'xt i.e.) make x'-x infinitely small. We have

^=
JjZ^x

==L (x'^W
=a '

x'x x'=z

a result which has already been given in the preceding section.

This example shows that a constant term in a function does not

appear in its derived function.

(2.) y = ax*

This gives

dy_J a(x>*-x*) _
^a(x>+x)(x'-x)

=^^
'=

'

(8) y = ax,

f-x

.'-j.) (x'
H - 1+am

~9g+ . . .

X -X
** X
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(4.) y ax n
.

This gives

//" r= fall Jj"1
.

d(y
n
) _

dx dx

<%*) dy _
dy dx dx

ny*-
l?y=a*mx-i .......... ty (3)

xm-lm xm~ 1 in ,_,_,.* m - i= a -,
=axm

n =ax* ,n m zl n n

We see from (3) and (4) that when y is given as a positive power of

x (whole or fractional), its #-rate of variation is got by the following

rule : Multiply by the index of x and lower the index by unity.

Example (7) will show that the rule is not restricted to positive

powers of x, but holds also for negative powers.

(5.) y= axn -{-bxm

djtj r <t(7-
H
)

+i
(^- ro

)-|
=T r(^-i+8.- x+ .

dx JJL x-x x'x J LJL
x'=x x'=x

= anxn~ l
-\-bmxm~ l

'.

From this example we see that the rate of variation of a sum of
such terms 'is the sum of the rates of variation of each.

(6.) y= wo,

where u and v are functions of x. As before

_

dx
x'=x

and, just as y increases by the quantity dy when x increases by dx,

u and v will increase by du and dv. Therefore

dy (u+du) (v-\-dv)-uv udv+vdu+dudv
dx~ dx dx
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But the third term in the numerator of this fraction, being the

product of infinitesimally small quantities, is infinitely smaller

than the others, and so vanishes in comparison with them.

Hence

dy= d(uv) = udv+^du^
dx dx dx dx

That is to say, the rate of variation of a product of two quantities
is obtained by taking the sum of the products of each quantity
into the rate of variation of the other. As an illustration we may
find the #-rate of variation of xm . xn . Here the result is

xm . nxfi- l+m&n- 1
. xn

which agrees with the result of (3).

If, in the above example, y is a constant, i.e., if the product of

u and v is constant, we get udv = - vdu.

(7.) ,-*-.
'

Let v= ~ and therefore y = uw, and we get

dx dx dx

But, as has just been remarked, we have vdw = -
ivdv, since wv = l,

and so

dy_ du uw dv _ 1 du u dv

dx dx v dx~~ v dx v'
2

'

dx

du dv

dx dx

~^2 >

which gives the rule for the rate of variation of a quotient of two

functions.

If u= xn, v= xm
,
we get

dy_xn

dx x*

Again, if u is constant, we have

dx -y
2 dx'

Thus, if
2/
= aar, a takes the place of u, and xP replaces v. There-

fore

dx x^n dx x^n
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which proves the applicability, to the case of negative indices, of the

rule given under example (4).

In many cases y will be given, not in terms of x as hitherto

assumed, but in terms of some function of x, say u. The ordinary

principles of algebra then show (see the remark at the end of last

section) that

dy_ dy du
dx du dx'

For example, y = (

dy_ d(ur] _ ckt* du
dx dx du dx

te-iffc-^-^+^-i,-!^dx dx dx

31. We shall now consider such rates of variation of trigono-
metrical functions as may be of use later.

(1) 2/
= sina?.

di/T sin a;' -sin a; T sin (f
~
I) cos (f+ I )

dx LJ x' x JU x' x
x'=x x'=x

But, when x' = x, sin (x
f -

x) = x' - x, and therefore the rate of

variation is cos x.

It follows at once from this result, by writing #+ o instead of #,

that if

(2) 2/
= cos x

^=-sin*.dx
Again, suppose

(3) 7/
= sec x.

Let cos x= u, and we get

^

dx du dx dx
'

dx
= sec2 x . sin #= sec x tan x.

From this result we readily obtain, when

(4) ?/
= cosec x,

-^-= -cosec x cot x.
dx
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By means of the result of example (7) in 30 we can find the

derived function of

sin x
(5) y = tan x

That result gives

cos x

ax
dx COS' X

_cos2 x-\-sm2 x_
COS2 X COS* X

and, as formerly, by the substitution of x-\-- for x, we deduce, from

(6) y= cot x,

_=-cosec2 z.

32. It will be instructive to deduce the results, which we have

just obtained, by a geometrical process. Take two near points,

P and P', on the circumference of the circle APB. Denote POA
by 9 and POP' by d9, and suppose that the radius of the circle is

FIG. 15.

unity. Let OM = x and MP= ?/; then NP'= cfo/ and -NP= d.c.

The angle d9 is assumed to be infinitesimally small (so that the arc

PP' is practically a straight line), and it is measured by the ratio of

PP' to OP; that is, by PP', since OP is unity. Also NP'P= 0.

Hence NP'/PP'= cos 9= dy[dO, and- NP/PP'= - sin 9= dx/dO. But

x = cos 0, y = sin 9
;
and therefore

Also

and therefore

^H^ = cos 0, ^^ =

d9 d9

sec 9 = !/,

- sin 9.

d sec 9 = -dx
x + dx x x(x -f dx)

dx
X*
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ultimately. But

-^ = 1 ( -^}d6 = i sin0 dO = sec8 sinO d9= seceta,nOdO.
ar x2 \ dO/ x~

Similarly,

d tan 9 = y^ -U
+ dx x x(x-\- dx)

cos . cos 9 d 9 - sin 9 (
- sin 0) d 9

^=
2-0

s ^(l+tan2
^) d0= sec2 d9.

COS v

33. Lastly we may obtain the rate of variation of the exponential
and logarithm of a varying quantity.

(1) y= ex

dj/ = T &f-e?= T
^a?~ LJ x'-x JLj x'-x

x'=x

But e, which is the base of the Napierian Logarithms, is by defini-

tion the limiting value of (1 + u)
u when u is a vanishingly small

quantity ;
so that we may write

1

X'=X

Therefore the limiting value of ex
'~x is

x'-x

J
fe

a; a;

and therefore

By means of this result we can deduce the derived function of

(2) y = log x.

For this gives x ey
,
and therefore dx/dy= ey, so that

dx

Inverse Problem.

34. In the immediately preceding sections we have dealt with

the problem to find the rate of variation of a quantity which is a

given function of some independent variable. The inverse pro-

blem to find the value of a quantity, the rate of variation of which
is given is of quite as great importance in physical inquiries ; and,

in order to solve it, we have merely to reverse the former process.
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In illustration we may consider the simplest possible case in which
we have y= x. Here dyjdx is constant and numerically equal to

unity ( 30, example (1) ). The relation y^x is indicated in Fig. 16

by the line bisecting the angle xoy, and the values of dyjdx are

given by points on the horizontal straight line passing through the

point y= l. If we choose any point P on the line y= x, and draw

through it a line parallel to the 2/-axis cutting the line indicating the

value of dyjdx in P', it is evident from the figure that the area of the

FIG. 17.

rectangle OP' is numerically equal to the value of y at P. For the

ordinate of P is four units in length, and OP' contains four square
units.

Now take any curve (the particular curve shown in Fig. 17 is the
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quadrant of a circle) representing graphically the relation ?/=/(#),

and draw another curve representing the relation y'=f'(x). This

may be called the ' derived ' curve of the former, since its ordinates

give the values of dy/dx at the corresponding points, i.e., they give

the values of the derived function. Take three near points, P^P^P.^
on the derived curve. The area included between the curve and the

axes is greater than the sum of such areas as P2#i, but is less than

the sum of such areas as PiX2 . These sums differ by the sum of

the rectangles PiP2 ,
etc. But, as #2 x^ etc., are made less and

less and ultimately vanish, these rectangles become smaller and

smaller and finally vanish. Of course any area PiX2 becomes

infinitesimally small as a?2 approximates to coincidence with x
;
but

PiP2 becomes infinitely small in comparison with P^ infinitely

small though it be. The magnitude of each little area similar

to Pj#2 is y'dx, where dx represents as before an infinitesimally

small increment of x. But y' dy/dx, and therefore y'dx= dy. So

that, finally, the limiting value of the sum of the rectangles (the

number of which increases indefinitely as their magnitude dimi-

nishes without limit) up to a given value of x, is numerically equal
to the value of y, at that given value of a?, in the original curve.

This limit to which the sum approaches is indicated by the symbol

fy'dx,

and the quantity itself is called the integral of y' with respect to x.

That is to say, while y' is called the ' derived function '

of y with

respect to x, y is said to be the '

integral
'

of y' with respect to the

same variable quantity. If it were necessary to preserve similarity

of nomenclature, we might term y the '

primitive function '

of y'.

Analytically, the operation indicated by f is an operation which

undoes the effect of the operation indicated by the symbol d. For

dx

The symbol d signifies an infinitesimal difference ; the symbol /
signifies the sum of an infinite number of infinitesimally small

differences. Indeed the symbol of integration is merely an exag-

gerated form of the letter S, denoting a sum.

In order to find the integral of y' we have to answer the question,

What function has y' as its derived function ? A considerable know-

ledge of derived functions is therefore essential.

35. We shall now consider some useful examples, and shall take

them in an order similar to that which was observed when finding
the derived functions.
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(1) Evaluate y=fadx.
We have merely to write down that function the derived function

of which with respect to x is a. In the direct process we had to

lower the power of x by unity and multiply by the undiminished,

power as a factor. Therefore, in the inverse process, we must raise

the power by unity and divide by the increased power. But, in

the above example, we may assume x as a factor since its value is

unity ; so that ax is the quantity of which we have to obtain the

integral. In accordance with the rule just given the result is ax.

But we must remember that in the direct process all constant

terms disappear ( 30, example (1) ) ; so, to the result as above

obtained, we must always add on a constant. Thus :

y =J adx= ax-\-b.

The constant b is quite arbitrary unless some condition is laid down
which determines it. Thus the condition might be that when x is

unity, y is equal to a+ 3, in which case we see that the value of 6 is 3.

(2) Evaluate y =
Jlaxdx.

In accordance with the rule which requires us to increase the power
of x by unity and divide by the power so increased and add a con-

stant, we get

y=2az2+ b = ax2
-f b.

Similarly from

(3) y'
= anxn~ l

we deduce

y= axn+b.

Or, changing n into n+ l from

y'
= axn

we obtain

which is true whether n be positive or negative, whole or fractional.

The proof, given in 30, that the rate of variation of a sum of

powers of the independently varying quantity is the sum of the rates

of variation of each term, gives at once, by inversion, the rule that

the integral of a sum ofpowers is the sum of the integrals of each

term. From
(4) y'=

we can at once write down
xn+ 1

, 7v= a- + b
n+1 m+1

In example (6), 30, it has been shown that, when y = uv, the
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increment of y consequent upon alteration of the quantity of which

u and v are functions is

dy
Hence, from

(5) y'
=

we obtain

y uv + a constant.

Also from example (7) of the same paragraph we see that

gves

y =
u
+ a constant.

36. In section 34 we found how we might represent graphically
the value of y for different values of x by means of an area included

between the a?-axis, the curve representing y' as a function of a?, and
two ordinates of that curve. By means of this method we can

obtain an independent proof of the result of example (3) above.

Let the curve in the diagram represent the relation y'
= xn . The

value of y corresponding to x is represented by the area OxP ; and

FlG. 18.

OxP=OxPy'OPy'. Now, in precisely the same way that OxP
represents fy'dx, 'the area OPy' represents the quantity fxdy', as

is indicated by the horizontal rectangle. But fxdy'fxd xn=

=fx. nxn~ l
. dx=nfxndx. Also OxP fy'dx=fxndx,

and OxPy'= xy
f= xn+1

. Therefore xn+l=fxndx+nfxndx= (n+ 1)

fxndx -=
(n+ l)fy'dx= (n+ l)y ; that is

/
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In Fig. 19 the rectangular area OP represents the product of

u and v. "When u and v increase or decrease simultaneously, the

increase of uv is evidently udv -f vdu (the little rectangle at P being

neglected). And also uv =fvdu +/udv, which makes the result

of example (5), 35, almost self-evident. If u decreases as v increases

(as in passing from P/

1 to P'
2) the area uv increases by the quantity

udv, but decreases by the amount vdu. But, in this case, dit,' is

itself negative ;
so that the result is still d(uv) = udv + vdu.

M

M u

FIG. 19.

If the curve P represents the value of v in terms of u, we may
take its reciprocal curve P' which represents w in terms of u, where

w = - The diagram gives (as above)

uw fudw -\-fwdu.

But when any quantity v increases by the amount dv, its reciprocal

decreases by - = *
ultimately; that is, the

increase is -
v2

Therefore
u _ fdu _ fudv _ f\~
-J-j J -tfT -J

which is the result of example (6) preceding.

37. From the results of examples (1) and (2) of 31, we can at

once write down

/sin xdx = cos x and /cos xdx = sin x,

because the derived functions of cos x and sin x are respectively

sin x and cos x.
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Since we know that d tan 9jd
= sec2

0, we can put

tan0=/sec
2 0d0;

and similarly

/sec tan d = /sec2 sin d = sec

/cosec cot d 9= /cosec
2 cos d 9 - cosec 0,

and

/cosec
2 d0= -cot 0.

38. Lastly, since ( 33) dexldx= ex and d log xldx= -> we get

' = 10 X.



CHAPTER V.

MOTION.

39. Position. The position of a point in space is completely
determined when three independent conditions are given, each

of which it satisfies. And its position can only be given

relatively to that of another point, for we do not know any

point of which we can assert that it is absolutely fixed. We
may say that one point is so much to the north or south

of another, so far to the east or west of it, and so much

higher or lower ;
or we may say that it is so far distant from the

other, that the line joining the two is inclined at a certain angle to

the vertical, and that the vertical plane through the two has a

given inclination to the vertical north-and-south plane. The given

quantities which determine the position are called the co-ordinates

of the point. The first case furnishes an example of the ordinary

Cartesian system of rectangular co-ordinates, the second illustrates

the system known as polar co-ordinates. In the Cartesian system

FIG. 20.

the co-ordinates are usually denoted by the letters a?, y, z ;
in the

polar system, the length is generally denoted by r, and the angles
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by 9 and 0. Thus, in Fig. 20, the relative position of P to O

may be given by # = AB, ?/
= OA, 2=BP; or by r=OP,

40. Displacement. When two points occupy different positions,

we speak of the displacement of the one from the other ; and it is by
means of the displacement that we determine their relative position.

Two ideas are essentially involved in the term the idea of magnitude
and the idea of direction. If we know only that one point is distant

three feet from another, we cannot tell what position it occupies

on the spherical surface all points of which satisfy this condition,

Other two conditions are required to fix the direction also, that is, to

determine the displacement.
Addition of two displacements is effected when we find the single

displacement, which produces the same result as the two do when

FIG. 21.

applied consecutively. The displacement from a to b may be

denoted by ab, and that from 6 to c by be. Then ab-\-bc= ac.

But the displacement denoted by be might have been performed
first. The effect would be to transfer a to b', which is a point such

that ab' is equal and parallel to be. This follows since a displace-

ment does not involve the idea of position, but only the ideas of

magnitude and direction
;
in fact, ab' is the same displacement as

be. And, similarly, bTc is the same as ab ; so that ab'+ b
rc=Tc + ab

= ac = ab + be. Also, since a displacement is reversed when its

direction is reversed, we have ab-ba ;
and the ordinary laws of

algebra apply to addition and subtraction of displacements. The
lines ab, be, etc., may be used to represent the displacements ab,

be, etc. ; for a line involves necessarily, and only, magnitude and

direction.

A line, given in magnitude and direction, is called a vector ; and

any quantity which, like a displacement, requires for its com-

plete representation a directed line is called a vector quantity. In

the course of this chapter, and of Cha. Vl. We shall get various

examples of such quantities.

4
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A quantity which is independent of direction which merely

possesses magnitude is called a scalar quantity, that is, it is com-

pletely determined by measurement on a suitable scale. When
treating such quantities algebraically it is usual to denote scaiars by

ordinary letters, as a, 6, x, y, etc., and vectors by Greek letters as

a, (3, y, etc.

Any displacement in space can be fully represented in terms of

three distinct unit vectors and three independent scaiars. Thus,
in the figure of last section, a may represent a unit length
drawn in the direction AB, and the line AB may contain x units

of length, so that the vector AB is xa. Similarly, if is a unit

vector in the direction Oy, the vector OA may be denoted by yfl ;

and the vector BP may be represented as zy. Hence - the vector

OP is xa+y/3+zy. But this quantity denotes merely the position

of P relatively to that of : and, consequently, if any other point
P' is situated relatively to another point 0' in the same way in which

Pis situated
with^ respect to 0, the vector xa+y$+ zy represents the

displacement O'F.
If all the quantities x, y, z, are variable arbitrarily, the vector

p = Xa -f yfi + zy

is the vector of any point in space. If x and y alone are variable

arbitrarily, the point lies upon a plane parallel to the directions

indicated by cr, (3. If one of the quantities alone varies, say x, the

point lies on a line whose direction is indicated by a. If all three are

fixed, the point is fully determined. More generally, if x, y, and

are connected by one, two, or three relations respectively, the

equation indicates respectively a surface, a curve, or a definite point.

We have spoken of the displacement of one point relatively to

another as that which determines the relative position in space of the

first with respect to the second. Sometimes the two points may lie on

a given surface or a given curve, and it is then frequently convenient

to speak of the displacement on the surface or along the curve. This

means that the magnitude of the displacement is to be measured

along the surface or curve.

41. Speed and Velocity. The displacement of a point may be

constant, or it may vary. If it varies, we say that the point is in

motion : so that by motion we mean change of relative position. [The
science which treats of motion, and which is generally called Kine-

matics, therefore deals with the ideas both of space and of time.]

The motion of a point is essentially a translation, for it has no

separate parts which can rotate relatively to each other. Its posi-

tion, we have seen, is not fixed unless three independent conditions
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are given. The removal of one restraining condition leaves the point

more free to move than before ;
and a point, the motion of which

is unrestrained, is said to have three degrees of translational

freedom.

FIG. 22.

If P moves to P' (Fig. 22), the change of displacement is represented

by thejine PP\ or ( 40), by p' p, where p' and p represent the vec-

tors OP' and OP. If this change occurs in time V - t, the time-rate of

change is
| /^^ or

-jfe
It is convenient to represent this quan-

tity by p ;
so that p is the time-rate of variation of p, or its first

derived function with respect to the time as the independent
variable ($28).

FIG. 23.

The mere magnitude of this time-rate is called the Speed of the

moving point ; but, when the direction is considered also, the term

Velocity is used.

In illustration of this we shall consider the case of uniform

motion in a straight line. Let QP (Fig. 23) be the line. Let Q be

a fixed point on it, and let P be the uniformly moving point.

Since P moves uniformly, the length of QP is proportional to the

42
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time t reckoned from the instant at which P occupied the position

Q ; say QP at, where a is a constant. Let (3 be a unit vector in

the direction QP, and let
, p be the vectors from O to Q and P

respectively. We have then

P = + at/3.

Hence, by the principles of Chapter IV.,

Here a is the speed of motion, and p is the velocity. The magni-
tude a is constant, and the direction /3 is also fixed. Also p a =-. at(3.

Hence the distance traversed is

s = at.

[This necessitates our defining unit speed as that speed with which
unit distance is described in unit time.]

42. Acceleration of Speed. When the velocity of a moving point

varies it is said to be accelerated, and the time-rate of its change
is called the acceleration. Meantime we shall suppose that the

change affects the magnitude only and not the direction : that is, we
shall investigate non-uniform motion in a straight line. We may
write (using the diagram of last section),

P = a+ #/3,

where x is some function of t, and we get

p
=

/3.

Here x is the variable speed of motion. Forming the second

derived function of p with respect to the time and denoting it by p,

we obtain

p
=

*/3.

If we assume the acceleration to be constant, that is, x = a con-

stant = b (say), this becomes

p
= b(3.

But, 35, this equation gives

p
= (a + bt) ft+y=xft+y

where a is the value of the speed when t =- o (usually called the

initial speed), and y is a constant vector which vanishes if we sup-

pose the velocity to have the direction /3.
And from this we deduce

further

p
=

ft/xdt
=

ft/(a+bt) dt = (c + at + |6*
2
) ft + a = xfl+a.

If we suppose the point to be in the line of motion, a will vanish,

x will be the distance traversed from Q, and c will be the distance
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from O to .Q. In other words, c is the numerical value of p (called

the tensor of p, and denoted by the symbol Tp) when t= o. Thus.

under uniform acceleration in the direction of motion we get

x = b

x a -\- bt

If the acceleration is negative, 'i.e., opposite to the direction of

motion, we must prefix the minus sign to the quantity b. If the

motion begins from rest, the quantities a and c vanish.

As a special case, when a body falls from rest under the action of

gravity, in which case the acceleration is denoted by the letter g,

we get

x=g, x=gt, x= \g&.

Again, if the body is thrown, upwards with speed V and we
consider the upward direction to be positive, the equations become

*=-<7, x=V-gt, x^t-\gt\
The second of these equations enables us to tell at once how long
the body will take to rise to its greatest height above the ground.

For, when the body is at its greatest height, the speed vanishes, that

is, x = o, and therefore

-Y.
9

From the third equation we can tell after what time it will reach

the ground. Since we are supposing x to be measured from the

surface of the earth, the condition is x = o. This condition gives
either t= o, or

*= 2V .

g

Hence the body takes as long a time to fall from its greatest height

as it took to rise to it. Again, we have x2 =V2
-2V# + #

2 2=
V2 - 2g(Vt - g&} = V2 -

2gx. When the point is at its greatest

height, x = o, and
V2

x=
2<7

Also, when cc= o, we get =V; that is, the point reaches the

ground with speed V equal and opposite to the speed of pro-

jection.

43. Curvature. Acceleration of Velocity. In the preceding
section we have supposed the direction of motion to be unaltered.

When the direction changes the path of the moving point is said to
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be ' curved.' The tangent to the curve gives the direction of motion

at any instant, and the limiting value of the ratio of the angle between

two tangents at near points to the length of path between these

points as they are taken closer and closer together and finally coin-

cide is called the Curvature of the path at that place. Thus the

curvature is the rate of change of the direction of motion per unit

length of the curve. If the tangent to the curve at any point makes
an angle 9 with any fixed line in its plane, while s is the length of

the curve, this definition gives as the measure of the curvature the

quantity dO/ds.

To obtain a measure of the angle between two lines in a plane

(and we are here limiting ourselves to the case of plane curves)

draw a circle (Fig. 24), of any radius r, from the point of intersection

of the lines as centre. The angle 9 is measured by the ratio which

the length, s, of the arc of the circle intercepted between the lines

bears to the radius. It follows that the ratio of 9 to s is equal to 1/r,

FIG. 24.

and is therefore constant for a given circle no matter how large or

how small 9 and s may be. Hence the curvature of a circle is the

reciprocal of the radius.

Now it is always possible to draw a circle the curvature of which

is the same as that of a given curve at a given point. This circle is

called the circle of curvature at that point ;
its radius is called the

radius of curvature ; and the reciprocal of its radius measures the

curvature of the given curve at that point.

In considering change of velocity as dependent on change of direc-

tion, it will be convenient to assume first that the speed is constant,

and also that the rate of change of direction is constant. In other

words, we shall investigate the case of uniform motion in a circle.

Draw any two diameters at right angles to each other (Fig. 25), and let

o, (3 be unit vectors along them. Let p be the vector of the point P.

According to the data OP revolves uniformly, that is, the angle

through which it turns per unit of time (called the Angular Velocity)

is constant. Let w be the angular velocity, so that, if P starts from

the point A, the value of the angle POA is wt, where t is the time
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taken by the point to travel over the distance AP. Then we have

vector ON= OP cos iot .
,
and vector NP = OP sin ut . ,

so that

ifOP=a
p
= a (cos (at . a -j- sin at . (3)

= a w sin cot . a + w cos at . 3

= u?a (cos w sn

This result shows that the direction of the acceleration is inwards

(for the negative sign is used) along OP, and that its magnitude is

the square of the angular velocity multiplied by the tensor ( 42) of

p. But the tensor of p is a, and the angle described per unit of time is

the speed, v, of P in the curve divided by a. Hence w2 is equal to

FIG. 25.

v 2
/a

2
, and therefore the magnitude of the acceleration is v2

/a. This

acceleration, it is to be observed, does not alter the speed, but only
the direction of motion ; the reason being that it is perpendicular to

that direction.

If OP be constant in direction, but of varying length r, the

acceleration is r
;
and we have just found that, if r is fixed in

length but revolves with angular velocity w
(
= 9, if OP makes an

angle 9 with a fixed line), the acceleration is-r02
. Hence, if both

magnitude and direction vary, the acceleration along r is

44. Acceleration in, and perpendicular to, the Direction of
Motion. When a point moves in any curve, the acceleration

perpendicular to the direction of motion at any position may be

found by drawing the circle of curvature at the given position. If

r is the radius of curvature, and v the speed of motion, the accelera-

tion perpendicular to the direction of motion is, by last section, vz
fr

towards the centre of curvature, and the acceleration of speed is s
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where s is the distance measured along the curve, in the direction

of motion, from a fixed point to the moving point.

The following method of deducing these results is exceedingly

simple and instructive. Let p be the vector to any point of the

path. Then
dp dp ds dp . ,

N

' =3hto"3i-5 '"'' (say) -

Now, dp being a vector, p' is also a vector in the same direction

that is, along the tangent (see Fig. 22, in which PP' must be supposed
to be indefinitely small). But, in the limit, when ds vanishes, the

length of dp is equal to ds. Therefore p' is a unit vector along the

tangent. And, since the length of p' is constant, dp' must be per-

pendicular to p'. Hence, dp'lds
= p" is a vector inwards along the

normal to the curve. And the quotient of the length of dp' by the

length of p' is equal to the angle, dO, turned through by the radius

of curvature. Hence the magnitude of p" is d9jds ; that is, ( 43,)

it is the reciprocal of the radius of curvature. But

p= <yp'_j_-yp'
= Vp'-\-V*p".

Hence, the total acceleration is made up of a part v along the

tangent, and a part, proportional conjointly to v2 and 'to the

reciprocal of the radius of curvature, inwards along the normal.

45, Average Speed and Velocity. If a point passes over a certain

distance in a certain time with varying speed, it is always possible

to find a uniform speed with which the same distance might have

been described in the same time. This is called the Average Speed
of the point. The last equation of 41 obviously applies to the

case of average speed.

When the acceleration of speed is uniform, the average speed is

clearly half the sum of the initial and final speeds during the time

considered. We may test this by the equations of section 42.

V is the initial speed of projection, and V -
gt is the final speed.

Hence the average speed is V ^gt. Therefore, by the last equation
of 41, the distance x is equal to (V$gt)t, which agrees with the

result already obtained.

The same results evidently hold for the corresponding angular

quantities ; for, in 42, x might be an angular distance.

46. Resolution and Composition of Velocities and Accelerations.

Velocities and accelerations, since they are vector quantities ( 40),

are to be compounded and resolved in accordance with the laws of

composition and resolution of these quantities. Hence, if a point is

subjected to a series of simultaneous velocities which are represented

by all the sides AB, BC, etc. (Fig. 26), of a closed polygon, taken in the
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same order round, except one, the resultant velocity is represented by
the remaining side taken in the opposite direction round. This theorem

is known as the '

polygon of velocities.' It follows that, if the various

velocities to which a point is subjected are representable by all the

sides of a closed polygon taken in order, the point is at rest. For the

resultant of all but one is equal and opposite to that one.

Inthe particular case of two velocities AB and EC, the resultant

is AC the third side taken in the opposite direction round. This

FIG. 26. FIG. 27.

theorem is known as the '

triangle oj_yelocities.' But, since the

vector AD is identical with the vector BC (Fig. 27), we may say that

the resultant of two velocities represented by adjacent sides of a

parallelogram is the diagonal drawn from the same point. In this

form the theorem is known as the '

parallelogram of velocities.'

In order to resolve a velocity into any number of components
we have merely to reverse the above process. The problem is

FIG. 28.

determinate if we are given 2(n 1) conditions, where n is the

number of components and n of the conditions are directional.

As a particular case, if we have to find the resolved part of a

velocity AC (Fig. 28) in a direction AB making an angle 9 with AC,
we require to know first the direction of the other component. It

is usually understood that the other component is to be at right

angles to the first, in which case we have AB =AC cos 9.
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These remarks apply to accelerations and to any other vector

quantities.

47. Motion of Projectiles. Let a, /3, be unit vectors in the hori-

zontal and vertical directions respectively, and let a point be pro-

jected from (Fig. 29) with velocity aa + bfi. If P be the position

of the point at time
, p and p' being the components of the vector

from to P, we have

p = ata

In the latter equation, the first term represents the vector height
to which the point would have ascended had gravity not acted ; and

ot.

FIG. 29.

the second term represents the extent
( 42) to which gravity has

diminished this height. The length of
p' is therefore bt-gt*, and

this vanishes when t= o and = The value t= o corresponds to

the instant of projection, and the other value gives the time of flight

on a horizontal range. Again

p'= 6/3-^/3.

This vanishes when t= b/g. But p' ceases to alter in magnitude just

at the instant that the highest point of the path is reached. Hence,

big is the time taken to reach the greatest height, and is equal to

one-half of the time of flight.

If this value of t be put in the expression for p', we find that the

total height reached is b*/2g. Also, by putting t= 2b/g in the ex-

pression for p, we find that the total range along a horizontal line

is Qab/g.
48. The Hodograph. If, from any point as origin, a line be

drawn to represent the velocity of a moving point, the free extremity

of the line traces out a curve which is called the hodograph of the
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path of the moving point. The tangent to the hodograph gives the

direction of acceleration in the path.

When the hodograph and the law of its description are given, the

path and the law of its description can be found. Thus, in the path

of a projectile, we have as above OP = (T=p+p' = a^a+(&- %gt-)(B ;

and therefore ( 41) the vector in the hodograph is a= aa+(b -gt)(3.

It is consequently a vertical straight line uniformly described. And

from this latter equation the former (which is its integral) can be

obtained.

49. Moments. The moment of any quantity is the measure of

its importance with regard to the production of some effect. The

FIG. 30.

moment of any directed quantity (which may be indicated by the

line AB) with reference to revolution about a point is proportional

to its own magnitude and to the distance of from its line of action.

If we define unit moment as the moment of a directed quantity of

unit magnitude about a point at unit distance from its line of action,

X>a is the magnitude of the moment of a quantity containing a units

about a point distant p units of length from its line of action. Thus
the moment of AB about is twice the area of the triangle AOB.

The moment of the resultant of two directed quantities is the

sum of the moments of the components. Let AC, AB (Fig. 31), be

the two components ;
AD being the resultant. We have to prove

that AOD =AOB+AOC. Draw OF parallel to CA to meet BA and
DC produced in F and E. Then AOD =AOB+BOD - ABD =
AOB+i FEDB-I ACDB=AOB+i FECA=AOB+AOC.
The lines AC and AB in the figure have been so drawn that

motion along them from A involves revolution in the same direction

about 0. Had AC been so drawn as to involve rotation about

opposite to that indicated by AB, it would have been necessary to

regard one of the triangles as being negative. The same proof
would then hold. It is usual to regard rotation opposite to that of

the hands of a watch as positive.
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When the direction of the quantity passes through 0, its moment
about vanishes.

50. Acceleration Perpendicular to Radius-vector. In, 43 we
obtained an expression for the accleration along the radius-vector

of a moving-point. We can now find an expression for the accelera-

tion perpendicular to the radius-vector.

If AB, in the last figure, represents the path of a moving point P,

the moment of the velocity of P is twice the rate at which the area

AOP is described as P moves along AB. For if 8s is a small length

measured along the path, pSs=p St is twice the corresponding in-
ot

crease of the area (
= da, say). Therefore 77 PT1> and, in the limit

when St= o, ~r,=p-T.=pv, where v is the speed, which proves the

statement. It is evident that the proof still holds when the direction

of motion varies, for it is true however small Ss and t may be.

Let OP(= r), the radius-vector of the moving point P (Fig, 31),

make an angle 9 with a fixed line in the plane of the figure. Let

FIG. 31.

P move to a point P', so near to P that PP' is practically a straight

line. Draw PM perpendicular to OP'. Then PM= rd0, and
0PM = r . rdO. Hence the area traced out per unit of time is

%r-0, so that r2^ expresses the moment of the velocity. Now we have

just seen that the moment of the velocity is equal to pv. But

pv is equal to rw, where u is the resolved part of the velocity

perpendicular to r. This is evident since, if p and r are inclined at

an angle $ to each other, we havep = r cos 0, and u = v cos 0. Hence
we have

ru = r*V.

Suppose now that the velocity is accelerated. The moment of the

velocity represents the rate of increase of the area, and so the

moment of the acceleration gives the rate of change of da/dt.
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The acceleration can be regarded as composed of two parts one

part perpendicular to r, and the other along r. Of these components
the former alone is effective in altering the rate of description of

the area, for, 49, the direction of the latter part passes through 0.

Hence the moment of the acceleration is ru
t
and so the acceleration

perpendicular to the radius-vector is

51. Simple Harmonic Motion. When a point P revolves with

uniform speed in a circle, the motion of the foot N (Fig. 32) of the

perpendicular drawn from P to any fixed diameter is called simple

harmonic motion. The velocity and acceleration of the point N can

easily be found when the position and velocity of P is given.

FIG. 32.

The velocity of N is evidently the resolved part of the velocity of P
in the direction ON. That is to say, its magnitude is v cos if v is

the speed of P. But cos 9 is proportional to NP ; hence the speed
of N is proportional to NP. The maximum speed is attained when
N passes through O ; and it is then equal to v, the speed in the

circle.

Similarly the acceleration of N is the resolved part of the

acceleration of P in the line ON. But the acceleration of P is,

43,
-

-y
2
/a, where a is the radius. Hence the acceleration of N

is - v*la . sin 9 = -y
2
ON/a/

2
. That is to say, it is inwards towards 0,

the centre of the range of N ;
and its magnitude is proportional to

ON, the displacement from the centre.

The ratio of the acceleration to the displacement is v2
/a>

2= w2
,

where w is the angular velocity of OP. But the angular velocity
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is 27T/7-, T being the time of a complete revolution in the circle.

Hence
acceleration 4?r2

displacement
~~

~r*

'

If we call B the positive extremity of the range, the angle

through which OP has turned since it coincided with OB is called

the Phase of the simple harmonic motion. The phase may also be

measured in fractions of a whole revolution. Thus we speak of the

quarter phase, etc.

The maximum distance to which N can get from is called the

Amplitude of the motion. It is obviously the radius of the cor-

responding circle.

If the motion does not commence at the positive extremity of

the range, the angle through which the radius has to turn until

P reaches the positive end is called the Epoch. Thus the general

expression for x, the distance of N from 0, is

x= a cos (w+a).

Here a is the amplitude, w is the (constant) angular velocity, t is

the time, and a is the epoch.

Simple harmonic motion is frequently exemplified in nature. It

occurs in the vibration of stretched strings, the agitation of the

luminiferous medium, etc.

52. Composition of Simple Harmonic Motions. (1) Motions in

the same straight line and of equal periods. Let the motion of P
(Fig. 33) correspond to one of the given motions. From P draw
a line PQ, making an angle 0, equal to the phase of another of the

motions, with the line OA
;
and let the length of PQ be equal to

the amplitude of this motion. Since and 9 increase at the same

rate, the line OQ remains of constant length and revolves at the same
rate as OP andPQ. But the foot of the perpendicular from Q on

OB moves with a motion which is compounded of the two given
motions. Hence the resultant of the two motions is another simple
harmonic motion, of the same period, in the same straight line.

And, in particular, when the amplitudes of the two components are

equal, the phase of the resultant is the mean of the phases of the

components.
This proof is quite general, and applies to any number of such

simple harmonic motions.

Another proof may be obtained as follows. Let the separate

motions be xl a1 cos(w^ + aj, x
c)
= a.,cos(wt -f- a2), etc. Then

a?= a?
1 4-JJa+ etc. =a L co$(ut + ctj) -f- a.,cosU + a.J+ etc. But



MOTION. 63

cos (u)t -f a
1 )
= cos u>t cos

ttj
sin wt sin av Therefore x = (al cos a

x + a2

cos a.2 -^- etc.) cos w (% sin aj-|-# 2
sin a2 4- etc.) sin wt. Now assume

the multiplier of cos ut to be equal to a cos a, and the multiplier of

sin at to be a sin
,
so that x = a cos w cos a - a sin wf sin a. This

gives x = a cos (>ot-\-a). [The assumption made is obviously justifi-

able ;
for it only introduces two new quantities a and a, and gives two

equations to determine their values.] Hence, in this case, the

resultant is simple harmonic motion of the same period in the same

straight line.

(2) Two simple harmonic motions, of the sameperiod andphase,
in lines inclined at any angle. These obviously compound into

a single motion of the same period and phase. For, let OA, OB
be the two inclined lines, and draw any other line OP. From P draw

PM, PN, parallel to OA, OB, respectively, to meet these lines in the

points N and M respectively. If P moves along OP with simple

N A

FIG. 33.

harmonic motion, it is evident that M and N move along OB and
OA with simple harmonic motions of the same period and phase.
And the motion of P is the resultant of their motions.

(3) Two simple harmonic motions in lines at right angles to each

other of the same period and amplitude, and differing in phase by
one quarter of a period. A glance at the figure of last section shows

that M' moves along OA' precisely as N moves along OB, since OP'

is perpendicular to OP. Hence the motions of N and M differ in

phase by one quarter of a period. And the motion of P is their

resultant. That is to say, the resultant is uniform circular motion ;

and the motion takes place from the positive end of the range in

which the motion is one quarter of a period in advance to the

positive end of the other range.

(4) Two simple harmonic motions of equalperiod, and ofphases

differing by a quarter period, in lines inclined at any angle. By
projection of the circle we obtain an ellipse in which conjugate
diameters correspond to mutually perpendicular diameters of the

circle. Hence the resultant is elliptic motion, with equal areas
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described in equal times (since this is so in the circle), and with a

law similar to that given in (3) as regards direction of motion.

(5) Any number of simple harmonic motions, in lines inclined at

any angle to each other, and of any phase, but of equal periods.

By a reversal of the first proof of (1), we see that the line OQ
may be replaced by any two lines OP and PQ, which revolve

with the same angular velocity. Hence any simple harmonic

motion may be broken up into two of the same period, which
differ in phase by any given amount, and one of which has any

given phase. This appears also by a reversal of the second proof

of (1). For if a cos (<at + a) is to be identical with a: cos (<ot + i)

+ a.2 cos (wt -f a2), we must have a x cos ^ + a.2 cos cr2
= a cos

>
an(i

^sinaj -}- a2 sina
2
= a sin a. That is, there are only two conditions

to be satisfied by the four quantities av av alt a2 ;
so that two

more may be imposed.
Let Pj, P2 ,

etc. (Fig. 34), be the points moving with simple

harmonic motion. Let pi, p\, be two points, whose motions com-

FIG. 34.

pound into that of PI ;
and let their phases differ by a quarter period.

D.eal similarly with P2 , etc., and let the motions of p^ p^ etc., be

all of the same phase, while those of p\, p'2 , etc., also agree in

phase with each other, but, of course, differ in phase from the

motions of pi, p^, etc., by a quarter of a period. Besolve all

these motions into their components along two rectangular axes

ox and oy. Then compound all of the same phase in each axis

with each other. The result is, by (1), two simple harmonic

motions in each axis differing in phase by a quarter period. Now
combine each motion in oy with the motion in ox which is of the

same phase, and we have ultimately two simple harmonic motions

which differ in phase by a quarter period and take place in lines

which are in general inclined to each other at a finite angle, These,

as we have seen, combine into elliptic motion.
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53. Wave Motion along a Line. Let a point vibrate up and

down the ?/-axis with simple harmonic motion about the origin,

and let the paper be drawn along behind it at a uniform rate in the

direction xo. The point will trace out a curve (indicated in the

figure) which exhibits the simplest form of a wave. The quantities

y and x can easily be seen to be connected by the relation

y = a cos (ut
- nx]

in which a and M denote the same quantities as formerly. If x is

constant, the equation is of the same form as the one which was

given in 51, and shows that every point on the a>axis vibrates up

and down with simple harmonic motion, and that y has one and

the same value for all the values of t which differ by the amount

27r/w. This quantity STT/W is called the periodic time, or the period,
of the motion.

If t remains constant, y varies with x in precisely the same
manner as it did when x was constant and t varied. The value of y
is the same for all values of x which differ by Sirln. This quantity
is the Wave-length.

Lastly, y remains fixed in value if x and t vary simultaneously in

such a way that (oit
- nx} is zero, x being measured from any special

position, and t from any definite instant. This gives x = w/ra, and
shows that the wave runs along in the direction ox with speed w/n
and without change of form.

Similar reasoning shows that the equation

y=a cos ((ut + nx)-

represents a succession of precisely similar and equal waves which
run in towards the origin with speed w/n. The resultant disturb-

ance due to the superposition of this set of waves upon the former

is represented by

ya {cos (ut -nx) + cos (o)t+ nx}\
=%a cos (tit cos nx.

Whatever be the value of x, this vanishes when t is any odd multiple
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of ir/2w ; and, whatever be the value of t, it vanishes when x is any
odd multiple of 7r/2w. The motion, at any definite point is simple

harmonic, of period 27r/w ; and the form of the wave at any definite

instant resembles that shown in Fig. 35, the ordinates being all

altered in the common ratio of 2 cos w to unity. The resultant is

therefore a series of stationary waves, which oscillate up and down,

parallel to the ?/-axis, in situ. This result is of importance in the

theory of the vibrations of stretched strings, etc.

54. Rotation. While a mere point can have translational motion

only, a rigid body (a body the parts of which cannot suffer relative

displacement) is free to rotate also unless three points of it, which

do not lie in the same straight line, are fixed. Three such points

being fixed, the body is devoid of all freedom to move. If two

points are fixed it can rotate about the line which joins them, and

is said to have one degree of rotational freedom. If one point only
is fixed the body may rotate independently about any three mutually

perpendicular axes which pass through that point it has three

degrees of rotational freedom. Finally, no point being fixed, it

lias, in addition, three degrees of translational freedom. The

greatest number of degrees of freedom which a rigid body can have

is therefore six. [A non-rigid body has distortional freedom also.]

, 55. Alteration of Co-ordinates because of Rotation. If a point

P is rotating about the axis of z (drawn perpendicular to the plane of

the paper through the point O, Fig. 36) with angular velocity w., the

FIG. 36. FIG. 37.

alteration of the x co-ordinate of P, in the time ct, is - w zr cos ^ct
atzr sin St= - Mzy$t. If P were revolving simultaneously about

Oy with angular velocity wy , the alteration of x in the same time

would be MyZdt. Hence the resolved part of the speed of P parallel

to Ox is (dt being small) ajyz
- w z?/.

56. Uniplanar Motion of a Rigid Body. By '

uniplanar motion '

is meant motion parallel to one plane. The motion of a rigid

plane figure is included as a special case.
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Let the motion be parallel to the plane of the paper; and let

AB be the position of a line in the body before the motion occurs,

while A'B' is its position at the end of the motion. Draw AA' and
BB'

;
bisect them, and erect perpendiculars at their points of .bi-

section. Let these meet in O. We have OA= OA', and OB = OB'.

Also AOB and A'OB' are congruent triangles, the angle AOB being

equal to the angle A'OB'. Thus AB might have been moved into

the position A'B' by a single rotation, about O as centre, through
the angle AOA'. Hence any displacement of a rigid body parallel
to one plane may be produced by rotation about a definite axis

perpendicular to that plane.
In general the body does not revolve in this way from its initial

to its final position. On the contrary, each point usually describes

a curve which is not the arc of a circle. In such a case we may
regard the total displacement of any point as made up of a succession

of indefinitely small displacements, each of which coincides with an

indefinitely small arc of a circle. This circle is evidently the

circle of curvature
( 43) of the path of the moving point. Its

centre is called the instantaneous centre about which all points in

the same plane are revolving. Thus, when a wheel rolls along the

ground, the point of the wheel which is in contact with the ground
is at rest for an instant it is the instantaneous centre about which
the wheel is revolving for a moment as a rigid body.

Let the point O, Fig. 38, be the instantaneous centre. The point pl

revolving about will come into the positionjp'*. Suppose now that p.,

revolves about p\ as the new instantaneous centre, and that this

brings it into coincidence with p'.2 about which the revolution next

takes place, and so on. The points plt p.21 etc., are points, fixed in

the body, which are successively at rest, and the points p\, p'%, etc.,

are points, fixed in space, at each of which in succession the in-

stantaneous centre is situated. The instantaneous centre coincides

for a short time with each point of both series, and passes suddenly
52
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from one to another. When the motion is continuous the polygons

PiP-2 and op'ip'2 . . . become continuous curves, and the

instantaneous centre moves continuously along them. In the case

of a rigid body, moving parallel to the plane of the paper, the line

through the centre perpendicular to that plane is instantaneously at

rest, and is called the instantaneous axis ; and the curves in the

figure are sections of cylindrical surfaces in the body and in space.

Hence we see that the most general uniplanar motion of a rigid

body consists in the rolling of a cylinder fixed in the body upon a

cylinder fixed in space. An obvious example of this is given when
a roller is drawn over the surface of the ground.
A similar statement, modified merely by the substitution of the

word ' curve '

for '

cylinder,' applies to the motion of a plane figure

in its own plane.

Mere translation is a special case in which the instantaneous

centre is at an infinite distance. It may be considered to consist in

infinitely slow rotation about an infinitely distant axis.

57. Motion of a Rigid Body in Space.- First, suppose one point

of the body to be fixed, and consider a sphere in the body with its

centre at the fixed point. Take any two points A,B, on the surface

of this sphere which occupy the positions A',B', respectively, at the

end of the motion. The reasoning of last section applies here also,

great circles of the sphere taking the place of straight lines. We
thus find that the displacement might have been produced by simple

rotation of the sphere about a diameter passing through the point O

(Fig. 37) on the surface.

The actual motion consists in the rolling of a cone fixed in the

body upon a cone fixed in space. This is at once evident if we

suppose the curve op^.^ ... of last section to be drawn upon the

surface of the sphere whose centre is fixed the points pit pz , etc.,

being successive positions of the extremity of the instantaneously

fixed diameter.

Now suppose that no point is fixed. The total displacement
consists in general of both translational displacement and rotational

displacement ;
and it is clear that we may separate these, taking

first one and then the other, and yet produce the same total effect.

As we have just seen, the rotation leaves a set of planes (those

perpendicular to the axis of rotation) parallel to their original

position, and mere translation does not alter this parallelism ;
so

that, in the final position of the body, there is one set of planes which

has been unaltered as regards orientation. The required rotational

displacement can be produced by revolution about any axis perpen-

dicular to these unaltered planes, but the final position of the body
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will depend on the particular axis chosen. And we can so choose

the axis that, after the rotation has taken place, mere translation

parallel to that axis will make the body take the required position.

And this can only be done in one way. For let the plane of the

paper be one of the planes which are unaltered in direction, and let

AO be a line in that plane, the final position of which is to be A'O' in

a parallel plane. Kotation through the angle between AO and A'O',

FIG. 39.

about any point in the plane of the paper, will make AO parallel to

A'O'
;
but AO will only be superposed upon A'O' if the point be

chosen by means of the construction of last section. And, when
this superposition is effected, a translation perpendicular to the plane
of the paper will bring the body into its final position. Hence

any displacement of a rigid body in space may be produced by
rotation about, and translation along, a definite axis.

When the rotation and the translation are simultaneous, the

motion is called a twist about a screw. Such a motion is the most

general kind of motion that a body which possesses only one degree
of freedom can have. [The rotation and the translation do not

occur independently, and so one degree of freedom alone is

involved.]

Any given motion of a rigid body in space consists in a twist

about a screw, in which the axis and the linear and angular
velocities are in general varying. The position of the axis at any
instant is given by the line of contact of two ruled surfaces, one of

which (fixed in the body) simultaneously rolls and slides upon the

other, which is fixed in space.
58. Composition of Angular Velocities. An angular velocity is

completely determined when its magnitude and direction are given,
and these quantities may be indicated by the magnitude and direc-

tion of a line drawn parallel to the axis of rotation. Angular
velocities (and accelerations) are therefore vector quantities, and
their laws of composition and resolution are identical with the laws

for vectors, and therefore with the laws for linear velocities and



70 A MANUAL OF PHYSIOS.

accelerations. Thus the resultant of two angular velocities or

accelerations, which are represented by the two sides of a parallelo-

gram, is represented, on the same scale, by the conterminous

diagonal.

An extremely important case is that in which a body with one

point fixed is revolving uniformly about an axis and is subjected to

uniform angular acceleration about a perpendicular axis. In the

corresponding problem regarding linear velocity and acceleration

( 43), the magnitude of the linear velocity is unaltered while the

direction of motion revolves uniformly, being always perpendicular
to the direction of acceleration, which also revolves uniformly. So,

in the present case, we can at once assert that the magnitude of the

angular velocity will remain constant, but that its' axis will revolve

uniformly, and will be always perpendicular to the axis of constant

acceleration. Now the axis of acceleration is always horizontal

when the rotating body is a top which spins uniformly with its axis

of revolution inclined to the vertical. Hence the direction of the

axis of the top will rotate uniformly, and will be always perpendi-

cular to a horizontal line (not a horizontal plane) which rotates

uniformly. The axis must therefore revolve at a uniform rate

around the vertical.

Precession of the equinoxes is due to angular acceleration of the

earth about an equatorial axis, and the peculiar motions of gyrostats

have a similar explanation.
To compound two angular velocities about parallel axes, indicated

in magnitude and direction by AB and CD (Fig. 40), it is merely

necessary to find a point O such that the moments of AB arid CD
about it are equal and opposite ( 49). Let p\,2hi be the lengths

of perpendiculars from upon AB and CD respectively. Since the

angular velocity of due to rotation about AB is numerically equal

A B

to AB, it follows that AB^ represents the velocity of perpendi-

cular to the plane of the paper ; and, similarly, the velocity of O

perpendicular to that plane due to rotation about CD is CT>p.2 ;
and

this quantity is of the opposite sign to the former, for points moving
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along AB and CD revolve oppositely around O. Hence, if the

areas AOB and COD are equal, the point O is at rest ; and thus the

locus of that is, a line through parallel to AB and CD is

the resultant axis of rotation.

Similar reasoning shows that the resultant axis due to angular
velocities indicated by AB and DC is a parallel line situated above

AB, and that the direction of rotation coincides with that of AB,
the larger of the two components.
To find the effect of the superposition of an angular velocity w

upon a linear velocity v, or of a linear velocity v upon an angular

velocity w, we may resolve the linear velocity into its two compo-
nents parallel to and perpendicular to the axis of rotation. The
effect of the perpendicular component v' is to shift the axis parallel

to itself through a distance rf, such that the speed dw is equal and

opposite to the speed v'. The parallel component simply moves the

whole body in the direction to the axis, so that the resultant is a

twist.

If a body is rotating simultaneously about three axes, the velocities

being representable by the three sides of a triangle taken in the same
direction round, the effect is that there is no rotation

;
but the body

is translated perpendicularly to the plane of the triangle with a speed

represented by twice the area of the triangle. If one of the rota-

tions is represented by a side of the triangle taken in the opposite

direction round, there is no translation
;
but the body rotates about

an axis bisecting the two sides which were taken in the same way
round. The rotation round this axis coincides in direction with the

rotation about the side of the triangle parallel to it, and the angular

velocity is twice as great as the velocity about the parallel side.

Corresponding results obtain in the case of angular velocities

representable by the sides of closed plane polygons.
59. Displacement of the Parts of a Non-Rig id Body. Strain.

A non-rigid body may alter in form, or in volume, or both. Any such

definite change of shape or bulk is called a Strain.

Homogeneous Strain. When all parts of a body, originally

similar and equal, are similarly and equally strained, the strain is

said to be homogeneous. It follows that parallel straight lines

in the unstrained body become parallel straight lines in the strained

body ; but, in general, the direction of the lines and the distance

between them is altered. And therefore parallelograms remain

parallelograms, parallelepipeds remain parallelepipeds, and any
figure or surface changes into a similar figure or surface. Thus a

sphere becomes an ellipsoid.

Such a strain is completely determined when we know what
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alteration in magnitude and direction has been produced in

three originally non-coplanar lines. One number is required for

each line to fix the change of length ;
and two numbers are required

to determine the change of direction of each line. In all, nine

numbers are in general necessary.

The simplest kind of homogeneous strain is that in which there is

uniform expansion or compression in all directions. Any line in

the strained figure preserves its original direction, and all lines are

equally altered in length. Such strain occurs in the compression of

fluids. One number completely determines it.

Next in order of simplicity is a homogeneous strain in which lines

in one definite direction are unaffected by the strain
;
that is, the

strain is c.onfined to planes perpendicular to a definite direction, and

the alteration in any one of these planes is precisely similar and

equal to the alteration in any other. It is usual, therefore, to call

such a distortion a plane strain. A circle in the unstrained figure,

drawn in one of the planes of distortion, becomes an ellipse ;
and so

a sphere in the body becomes an ellipsoid. (In the cases of equal

expansion or of equal contraction in all directions in the planes of

the strain, the ellipsoid is an oblate or a prolate spheroid respec-

tively. All lines which' are not in or perpendicular to these planes

are altered in direction.) All perpendicular diameters of the circle

become conjugate diameters of the ellipse ;
in particular, the

principal axes of the ellipse were originally perpendicular diameters

of the circle from which, however, they usually differ in direc-

tion. Four numbers determine a plane strain of the most general

kind.

When the principal axes of the ellipse (called the strain-ellipse]

into which the circle is deformed are not changed from their original

directions in the unstrained body, the strain is called a pure (or

non-rotational) plane strain. In this case the distortion consists in

extension (or contraction) in two directions at right angles to each

other. Any rotational, or impure, plane strain may (so far as the

final effect is concerned) be produced by a pure strain superposed

upon, or followed by, rotation about a definite axis perpendicular to

the plane. In a pure strain every line except a principal axis has

suffered rotation
;
and it follows from this that the superposition of

two pure strains generally produces an impure strain. Hence a

body may be distorted by three plane strains in succession, and yet

(the strains being properly chosen) be left unstrained, but rotated

through an angle about a definite axis. Three numbers completely
characterise a pure plane strain.

A specially important case is that in which there is no alteration
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of volume. This implies elongation in one direction and equal con-

traction in another. We may suppose that these directions are

mutually perpendicular, giving a pure strain
; for, as we have seen,

any other strain may be assumed to consist in a pure strain followed

by rotation as of a rigid body. .
Let oy be the direction of the

elongation, and let ox be the direction of contraction. Let abed be

y

FIG. 41.

a rhombus in the unstrained figure, which becomes the rhombus

a'b'c'd' in the strained state, oa being equal to 06', oa' being equal to

06, and so on. We have then ab equal to a'b', with similar results for

the other sides of the rhombus. It is, therefore, obvious that there

are two sets of planes in the figure which experience no alteration,

except as regards position ;
so that (rotation excluded) the strain

A' I ct &

FIG. 42.

might have been produced by holding fast one plane of either set

say the plane through cd perpendicular to the plane of the paper
and sliding all planes parallel to it through a distance proportional

to their distance from the fixed one, until the originally acute angle
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of the rhombus becomes equal to its supplement. This motion is

termed shearing motion, and the strain is called a simple shear.

To make the result of this shear coincide with the result of the

above pure strain, we must turn the body round in the direction of

the hands of a watch through an angle b'db, so that b'd coincides

with bd that is, through an angle equal to half the difference

between the obtuse and acute angles of the rhombus.
In the most general homogeneous strain, a sphere in the un-

strained body becomes an ellipsoid in the strained state. Any set

of three mutually perpendicular axes become mutually conjugate
diameters of the ellipsoid. In particular, the three principal axes

of the ellipsoid (which are called the principal axes of the strain)

were originally perpendicular diameters of the sphere. These

principal axes are usually rotated from their initial positions ; and,

as in the corresponding case of plane strain, when this turning of

the principal axes does not occur, the strain is said to be pure or

non-rotational. So far as the ultimate result is concerned, any
impure strain may be looked upon as due to a pure strain followed

by a rotation.

Any given strain may be produced by a simple shear followed by an

extension (or contraction) perpendicular to the plane of the shear which

in turn is succeeded by a uniform expansion (or compression). For

the shear may be continued to such an extent as to give the proper
ratio of the maximum and minimum axes

;
and the perpendicular

extension will then give the proper ratio of the mean axis to each

of the other two
; while, lastly, the uniform expansion can be con-

tinued to such an extent as to give the proper magnitudes of the axes.

60. Non-Homogeneous Strain. So long as rupture does not

occur, all displacements in a portion of matter are essentially con-

tinuous. Hence, however greatly the displacements may change

throughout the body, we can always consider a portion so small

that, within its limits, the strain is homogeneous.
Let P and Q be two near points so near that the strain is

homogeneous, and let 8x, dy, <te, or |, rj, ,
be the co-ordinates of Q

relative to P. If u, v, iv, be the components of the displacement
of P parallel to the axes of x, y, and z, respectively, we may denote

by u + du, v + dv, w+ dw the corresponding quantities for Q, so

that du, dv, dw are the components of the relative displacement of

P and Q. Each of these components will in general depend upon
the values of

, ?;,
and

;
and each must be a linear function

( 29) of these quantities since, in homogeneous strain, straight lines

remain straight lines. Now, du/dx being the #-rate of variation of

u, du/dx . dx is the change of u due to the change Bx, and so on ;
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so that dii = du/dx . d<-\-du/dy . cy -\-dwfdz . Sz. But, instead of du,

we may write the equivalent quantity d%, and so finally

(hi du du

-_ .

dx dy dz

The quantities u, v, and w being known functions of x, y, and z,

these equations enable us to determine fully the nature of the

strain in the neighbourhood of any given point.

The multipliers of
, ;, and ,

in these equations, are the nine

numbers which determine the strain ( 59).

61. Motion of Fluids. While the parts of a rigid body cannot

suffer relative displacement, the parts of a non-rigid solid can be dis-

placed relatively ; but the magnitude of any displacement is not un-

limited, for, if it be too large, the body will be ruptured. In an

infinite expanse of fluid there is no limit to the possible increase

of distance between two originally near parts.

A Line of Flow in a moving fluid is defined as a line so drawn
that its direction at any point coincides with the direction of motion

of the fluid at that point. It may, or it may not, be the actual

path of any particle of the fluid. In illustration of this we may
consider the motion of points in a spinning top (^ 58). At any
instant the line of flow of a given point is a circle drawn round the

axis of the top. But the axis is itself in motion, so that the path
of the point merely coincides with the line of flow for an indefinitely

small distance. Similarly, when the lines of flow in a fluid are in

motion, the path of any particle only coincides with one line of

flow for an indefinitely small interval of time.

When the lines of flow are fixed, so that they are actual paths of

particles, the motion is said to be steady, and the lines are called

stream-lines.

If lines of flow are drawn through all points of a closed curve, a

Tube of Flow is formed. None of the fluid inside such a tube ever

passes out of it, and none ever enters it from the outside.

Whatever be the nature of the strain throughout a solid, we may
consider, instead of the total strain, the strain produced in a

given indefinitely small period of time. The displacements in

that period are evidently proportional to the instantaneous velocities
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of the various parts. And, hence, all the results which we have

obtained regarding displacements in a non-rigid solid have a direct

application in the discussion of fluid motion.

Just as rotational strain may exist in a solid, so, in a fluid, there

may be rotational, or, as it is termed, Vortex Motion. A line,

drawn in the fluid so that its direction coincides at any point with

the direction of the axis of rotation at that point, is called a vortex

line. And a tube formed by vortex lines drawn through all points
of an infinitely small closed curve forms a vortex tube, and is said to

enclose a vortex filament. In most cases of fluid motion in which

vortices exist, the vertically moving parts occupy only a small pro-

portion of the whole volume of the fluid.

FIG. 43.

If ds represents an infmitesimally small length of a curve drawn
between any two points in a moving liquid, while v represents the

velocity parallel to the curve at any point, the integral of the

quantity vds is called the Circulation along the curve. If we sur-

round the curve by a tube (Fig. 43), the sectional area of which is

numerically equal to the speed along the curve, the volume of that

tube is numerically equal to the circulation along the curve. The

positive or negative sign must be attached according as the circulation

is in the positive or negative direction round the curve. When the

curve is closed and lies in a plane, we may speak of the circulation
' round the enclosed area.' It is evident that the circulation round

any area is equal to the sum of the circulations round its parts,

for the circulations round a common boundary are equal and of

opposite sign.

Shearing Motion. The results which we have obtained regarding

pure homogeneous plane strains apply directly to this case of fluid

motion. And it is easy, in addition, to deduce useful results regard-

ing the circulation of the fluid.

(1) The circulation along any two plane conterminous curves,

which nowhere lie at a finite distance from each other, is the same.
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To see this, let abc and ac be portions of two such curves, and let

the straight line mn indicate the velocity v, which is constant all

along these portions provided they are small enough. Hence the

circulations round abc and ac are the products of v into the projec-
tions of abc and ac respectively upon mn. But these projections
are equal, which proves the result.

FIG. 44.

(2) The circulations round any two similarly situated and equal

plane areas are equal. For the velocities in the one curve relatively

to the point o are equal to those in the other curve relatively to the

corresponding point o'. Hence the circulation round s' differs

from the circulation round s by the product of the relative speed
of o' and o into the projection of s' upon the line of relative motion

of o and o'. But this vanishes, since s' is a closed curve.

(3) The circulation round any plane curve is proportional to its

area. For we may divide the area into a series of indefinitely

small, similarly situated, and equal, parallelograms. The circulation

FIG. 46.

round each of these is equal by (2). And now, since the edge of the

area formed by these parallelograms is nowhere finitely apart from

the given curve, the result follows from (1).

(4) The circulation round any plane area is equal to twice the

area multiplied by the angular velocity of the fluid round aperpen-
dicular axis. Let the area be an indefinitely small circular area.

From the analogy to strain, we see that any instantaneous motion

may be broken up into a pure part and a rotational part. The
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motion corresponding to the pure part is constant over the small

area, and therefore contributes nothing to the circulation. The

rotational part gives a tangential speed wr, where w is tjie angular

velocity round a perpendicular axis through the centre, and r is

the radius of the circle. Hence the circulation is 2:rr . rw = 27rrsw.

But Trf2 is the area of the circle, and so the proposition is true in this

case
; and, w being constant, we see, by (3), that it holds in all

cases.

Heterogeneous Motion. A portion of the fluid may be taken so

small that the motion is homogeneous throughout. The previous

results are then applicable.

Keasoning similar to the above shows that the circulation round

any closed curve (plane or not) in the fluid is equal to twice the

integral of the normal angular velocity over any surface bounded

by the curve. For a sufficiently small portion of the surface may
be assumed to be plane, and the result (4) applies. Hence, if a

closed surface be taken, and the normals at all points be drawn

outwards alone, or inwards alone, the integral of the angular

velocity over the surface is zero. For if we draw any closed curve

round the closed surface, the integral over each portion of the surface

corresponds to equal but opposite circulation round the closed curve.

Vortex Motion. The above conclusion may be applied to the case

of a finite portion of a vortex-tube. The sides of such a tube are parallel

to the axes of rotation. Therefore the ends only contribute to the

integral of the angular velocity ;
and so the integral for each end

must be equal in magnitude, and it will be of the same sign in both

cases if the normals are drawn in the same direction along the tube.

Hence the circulation is the same at all sections of a vortex-tube.

The tube being small, the angular velocity is therefore inversely

proportional to the cross-section. Hence the vortex rotates faster

the thinner it is.

We conclude also that a vortex must either return into itself,

forming a closed circuit, or that its ends must be at the surface of the

liquid ;
for the velocity of rotation can neither abruptly change

nor become infinite within the liquid. A smoke-ring exemplifies

the former case; the eddies formed round the edge of the hand,

when it is dipped into water and drawn rapidly along, illustrate the

latter.



CHAPTER VI.

MATTER IN MOTION.

62. Force. The fundamental property of matter, which distinguishes

it from the only other real thing in the universe, is inertia. And,

in consequence of inertia, when we move a body we are conscious

of making some exertion, and are accustomed to say that we exert

force. Hence it is usual, as Newton did, to speak of force as the

cause of motion ;
and the force may be of the nature of a push, a

pull, an attraction, a repulsion, etc.

We do not yet know the nature of the physical process going on in

matter which is in a state of tension, and so we figure it to ourselves

by means of the mental impression caused by the muscular sense.

But loudness and brightness, though they, as we shall see later, are

mere subjective impressions, yet correspond to certain physical

realities. We may therefore proceed to inquire whether or not

there is some physical process corresponding to the impression of

force.

We have already obtained ( 7) a kinetic measure of energy ;

and by means of the new idea of force, we can now deduce a

statical measure of it. Work is done when we move a body against

the action of a force which we assert to be the cause of motion in

the opposite direction. If the force is constant, we know that the

work which is done is proportional to the distance through which

the body is moved against the action of the force, for every equal

addition to the distance is made under precisely similar circum-

stances. Also we know that the amount of work which is done is

proportional to the force, it being more and more difficult to produce
the displacement according as the opposing force is greater. Hence,

provided we define the unit of work as the work done by unit force

acting through unit distance, we may write

w =fs,

where w, /, and s represent respectively the work, the force, and
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the distance. But, by the principle of conservation of energy, if a

mass m is projected with speed v, and is brought to rest by the action

of the force, we know that the work is equivalent to the kinetic

energy which is lost. Therefore

mv2
=fs.

From this equation, denoting the energy by e, we deduce

de/ds=f.

That is, force is the space-rate of variation of energy.
Force is not conserved as energy is, although it ma}" possess that

kind of conservation spoken of in 12. Indeed, Newton's third

law of motion asserts that the total algebraic sum of the forces in

the universe is zero.

And now, having arrived at a clear understanding of what ' force
'

really is, we may use the word, or any of its special equivalents, in

subsequent sections, and speak of force as the cause of motion,

without producing confusion of ideas.

There is no such thing in nature as a material point. How-
ever small a particle of matter may be, it always has a finite

surface, and occupies a certain volume. And no actual force acts

at a point merely ; it is distributed throughout a volume, or is

applied over a surface. As an example of the former class of forces,

we may take the force of gravitation ;
as an example of the latter

class, we may take the force of friction, i.e., the tangential force

which resists the sliding of portions of matter over each other.

[This tangential force is independent of the area of the surface

of contact of the two bodies so long, at least, as the surface

of contact is not so small that sliding motion cannot occur with-

out producing abrasion of the substances. It is in general pro-

portional to the normal pressure between the bodies ; but, in many
substances, it depends greatly upon the time during which the

contact has lasted. It may be much reduced by the use of proper

lubricants.

The law of friction may be expressed by the equation

F= /B,
where F is the force of friction, R is the normal pressure, and

/<'
is

a constant, called the co-efficient of kinetic friction.

When the forces which act so as to produce motion are just in-

sufficient to overcome friction, this equation becomes

where
p,

called the ' co-efficient of statical friction
'

is, as experi-

ment shows, a constant of greater numerical magnitude than /w'.
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It follows that sliding motion will continue under the action of

forces which were inadequate to start the motion.]
63. The Laws of Motion. Newton's three Laws of Motion

(expressed in terms of force regarded as the cause of motion) form
at present the simplest foundation for the study of the phenomena
of moving matter. The science which deals with these phenomena
has, therefore, been called Dynamics, i.e., the science which treats

of the action of force upon matter. It is usual, also, to divide the

subject into two parts Kinetics and Statics according as motion

is, or is not, produced. It is impossible to doubt that ultimately a

more fundamental, and at least equally simple, basis will be obtained

in connection with the principles of energy. We can even at present
make such a substitution for Newton's Laws, barring the simplicity.

64. The First and Second Laws. The First Law asserts that evert/

body maintains its state of rest, or ofuniform motion in a straight

line, except in so far as it is caused by force to alter that state.

The ' rest
' here referred to is, of course, relative rest. And,

instead of the last clause, we might say
' so long as it remains in a

region of constant potential.' This law, in fact, asserts the conserva-

tion of the energy of the particular body considered, potential energy

being regarded ( 8) as energy which has passed to a connected system.

Uniformity of motion in magnitude and direction does not enable

us to say that no force is acting upon the body, but only that the

resultant of all the forces is zero that they can be combined into

two equal and opposite forces. This means that the body may be

simultaneously gaining and losing energy at precisely equal rates.

The law implies, also, that force must be acting upon a body if the

direction of its motion alters, the magnitude remaining constant.

[In this case the body moves along an equipotential surface.]

The Second Law gives the relation between force and the effect

which it produces. It states that change of motion is proportional
to force, and is in the direction in ivhich the force acts. By
motion Newton meant what is now called momentum the product
of the mass and the velocity of the moving body. Of course, the

change of momentum is proportional to the time during which a

constant force has acted, so that we may express the second law by
the equation

ft mv,

v being the change of speed produced during time t in the given
mass in by the average force /. The actual force at any instant is

got by making the time indefinitely small, when the equation becomes

/= ma,
6
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being the acceleration. And this form of the equation may be

used in all cases, whatever be the value of /, provided that / and

represent the average values of the force and the acceleration during
the time t. Both equations involve the assumption (or, rather, the

definition) that unit force is the force which, acting upon unit mass for

unit time, produces unit change of speed. [From the latter we get

fds = mavdi= mvvdt= mvdv, and therefore/s = ^mv~, so that our new
definition of force is equivalent to the former one

(}J 62).]

If two forces, /i and /2 ,
act upon equal masses, the accelerations

produced are proportional to those forces, for /a //o
= a

1/a.2 . Thus the

Second Law of motion gives us a method of comparing forces. It

also enables us to compare masses. For, if two equal forces act

upon different masses, in^ and m2 ,
we have mla^=m./i.2 ; i.e., the

accelerations produced are inversely proportional to the masses.

By means of the first two laws alone we can investigate the

motion of a material point or of a set of disconnected particles.

For example, in the equations of motion given in 42, we
have only to introduce the mass m as a factor on each side in order

to obtain various dynamical quantities. Thus the equation x= g

becomes mx= mg. The quantity mg thus represents the force with

which the earth is attracting the mass m i.e., the weight of the

body. Hence, if m be the weight, we have the equation

which expresses the fundamental distinction between Weight and

mass. The mass m is fixed in amount
;
the weight w varies when

g varies, and might be caused to vanish by taking the body to a

region where g was zero.

It is frequently convenient to use, instead of m, the equivalent

quantity V(>, where V is the volume of the mass m and p is the mass

per unit volume, which is called the density of the substance.

Again, the equation x= gt becomes mx ingt. But 'nix is the

momentum produced in the body, which we thus see to be propor-
tional to the time during which the body has been falling under the

action of gravity.

Also, instead of x-=- V- 2^.r, we have fynx
2= fyn'V-ingx, or

jra(V
2

a;
2
)
= mgx, which tells us that the loss of kinetic energy is

proportional to the distance through which the body has risen.

In 43 it was shown that the acceleration of a point moving in a

circle of radius r with uniform speed v is v'2/r towards the centre.

If the point have mass m, this corresponds to a central force mv-/r,

which, e.g., in the case of a stone revolving in a sling, is supplied
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by the tension of the cord. The necessity for this central force

gave rise to the erroneous idea of a '

centrifugal force,' which it was

supposed to balance. In accordance with the First Law, the body
tends to move along a tangent, and not from the centre, and the

apparent force is really a result of inertia.

65. Further Discussion of the Second Law. The above examples
involve the application of a single force, constant in magnitude and

direction, to a material particle. But the Second Law enables us

also to investigate the motion of a material particle under the action

of any number of forces acting simultaneously, for it implicitly

asserts that each -force acts independently of all the others, i.e.,

the effect produced by any force is the same as it would be if that

force alone acted upon the particle when at rest.

To completely specify a force we require to know its magnitude,
the direction in which it acts, and the place at which it is applied.

Hence a force is a vector quantity, and so the resultant of any
number of forces acting simultaneously upon a material point is to

be found by the ordinary law for the composition of vectors. Indeed

this follows at once from the Second Law, since the forces are pro-

portional to the accelerations which they produce.

Hence, when a particle is acted upon by any number of forces,

we need only consider it as moving under the action of the single

resultant force.

Since a mere particle has only three degrees of freedom all trans-

lational three conditions completely determine its motion. If X, Y, Z

be the components of the resultant force in the directions of the axes

of x, y, z, respectively, these conditions are, by the Second Law,

ma;= X; mv/^Y; mz= Z.

In particular, the conditions of equilibrium are

X = 0; Y = 0; Z = 0.-

66. Special Examples. We shall now apply these results to

some special cases of motion of a material particle.

(1.) A particle of mass m is projected with initial speed v a . It

experiences a resistance which is proportional to its velocity. In-

vestigate the motion.

We may suppose that the motion is in the direction of the axis of

c, so that we have only to consider the single equation

mx= - kx,

where k is constant. Multiplying each side by dt, this becomes

mdx= kdx.

The integral is mx = c-7cx.

62
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To determine the value of the constant c, we observe that v is the

(given) value of x when x = o. Hence c mv . Therefore, finally,

m(va x)= kx.

This result shows that the particle will come to rest at a distance

mv a/k from the point of projection.

We may write the equation in the form

mdx
mvu

- kx

This gives ( 38) t= TF m/k log (mv -kx), and so, since t = o when
<
= o, we have T = m/k log mva . But when = T U we get xntv /k.

That is
r

r,, mlk log mv tt
is the value of the time which elapses until

the particle comes to rest.

(2.) A particle slides from rest down an inclined plane under the

action of gravity. How long wr
ill it take to move over a given dis-

tance, and what will be its speed of motion when it reaches the

given point ?

Let m, , E, and F represent respectively the mass of the particle,

the inclination of the plane to the horizon, the normal pressure,

and the force of friction. We may take the axis of x in the direc-

tion of motion, so that we get

mx= mg sin a F.

If /*' is the co-efficient of friction, this becomes

mx=mg sin a - jt*'R.

If the axis of y be taken perpendicular to the plane, the other

equation is

wy = =R mg cos a.

Hence
x=

ff (sin n - ju' cos a)
=A (say).

{tru
-of,

FIG. 47.

This quantity is independent of the mass of the particle. Multi-

plying by dt we get dx= A.dt, from which
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where v is the initial speed, and therefore is zero by the given
conditions. Hence, again,

If we take the origin at the point from which the particle starts,

we get a?u
= 0, so that the time taken to move over the distance

(sn a -
// cos a)

And the speed attained is

(sin a
fi' cos a).

The kinetic energy gained by the particle is therefore

mgx (sin a n' cos a).

(3.) A material particle is attached by an elastic cord to a point
on an inclined plane down which it would slide under the action of

gravity if not so attached. Find the limiting values of the tension

in the cord between which motion will not occur.

T being the tension in the cord, and the other quantities having
the same meaning as in (2), we get

mx=Q=mg sin T[img cos .

From this equation the two values of T may be found. The

sign -|- corresponds to the case in which the cord has its greatest

extension so that friction acts down the plane. The sign indicates

that the particle is just on the point of sliding down, T having its

smallest possible value.

(4.) A particle of mass in is swung round in a vertical circle by
means of a cord of length 1. What must be its angular velocity in

order that the string may just be slack when the particle is at the

highest point of its path ?

The downward force is the weight of the particle, which must

be balanced by the reaction to acceleration (the so-called ' centri-

fugal force '). Hence, at the highest point,

g= ^l,

where w is the angular velocity.

At the lowest point we have

67. Dynamical Similarity. We may write the expression for

Newton's Second Law ( 64) in the form
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where I is the distance which the mass m moves over from rest, in

the time t, under the action of the force /. And we may further

regard this equation as a dimensional equation ($ 27) ;
in which

case the sign of equality merely means that the dimensions of the

quantity on the left-hand side of the equation are identical with

those of the expression on the right-hand side of the equation.

But, from a dimensional equation, we cannot make any deduction

regarding the absolute magnitude of any of the quantities which are

involved, for the equation simply asserts proportionality of magni-
tude between its various terms. Still, by a suitable definition of

units, we can pass from the dimensional to the ordinary equation.

Thus, in the above equation, we may define unit force as the force

which, acting on unit mass for unit time, causes the unit of mass to

move over unit distance from rest ; or we might adopt the definition

of 64.

The idea of dimensions is of great importance in physics. It

affords a useful check on the accuracy of algebraical work ;
for the

dimensions of all the terms in a physical equation must be the

same. But its use is not limited to this extent. For example, we

may write the equation

in the form

from which we see that if, in two similar material systems, the

forces, masses, and lengths, are in the ratios a/1, /3/1, and y/1,

respectively, and if the systems begin to move in precisely similar

manners, the motions ivill continue to be similar, provided that we

corn-pare them after the lapse of intervals of time which are in the

ratio of \f to unity in the two systems.

This principle, which was proved otherwise by Newton, has been

called the Principle of Dynamical Similarity. Later on, we shall

get various examples of its use. (See ^ 73, 76, 124, 159.)

68. The Third Law. Hitherto we have not discussed the motion

of portions of matter between which there is mutual action of any
kind. The first two laws of motion do not enable us to solve such

problems. The requisite additional information is given by the Third

Law of Motion : The mutual actions between any two bodies are

equal and oppositely directed.
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A stress is defined as a system of equilibrating forces, and so we

may put the above law into the form : The mutual action between

any two bodies is of the nature of a stress.

No one will question the truth of this law in the cases in which

the various masses concerned are in equilibrium. Thus, when a

book lies upon a table, we say that the table reacts upon the book

j-rn C
F| F

,

FIG. 48.

with a pressure which is equal to its weight. But it is by no means
so evident that a body, when' pulled along by means of a cord,

pulls backwards with a force which is precisely equal to that by
which it is dragged forwards. In order to see how this can be we
must consider all the forces which are acting upon the moving body.

Let B, Fig. 48, be the body and let F be the force with which it is

pulled in the direction of F'F. Also let F" be some other force

acting upon B in the opposite direction.

The equilibrium of B is determined solely by the equality of the

forces acting upon it, i.e., of the forces F and F", and is not at all

affected by the force F' with which B reacts upon the pulling body.

Hence the equality of the forces F' and F is a matter which is

entirely independent of the equality of F" and F, and can only be

proved by experiment. It is needless to add that all Newton's

laws express the results of experiment or of observation.

But (as Newton himself pointed out) we may regard
'

action,' not

merely as force but, as the product of force into the speed which it

produces in the body upon which it acts. Now, the speed produced

being the (time) rate at which the force moves the body, this pro-

duct is ( 62) the (time) rate at which work is done by the force.

[In modern terminology this is called the Activity.] Hence a

second interpretation of the third law is that the (time) rate at

which a set of forces do work upon a given system is equal and

opposite to the rate at 'which the reacting forces do ivork. Had
Newton been aware that heat was a form of energy this would (see

Thomson and Tait's Elements of Natural Philoso2)hy) have been

a complete statement of the modern principle of conservation of

energy ; but, in his day, it was supposed that work spent in over-

coming friction is unavoidably and entirely lost.

Taken in conjunction with the Second Law, this law enables us

to investigate the motion of bodies which impinge upon each other.
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To avoid unnecessary complications we may assume that two

smooth spheres, of masses mx and m.2 respectively, are moving in

the direction of the line joining their centres with speeds v
l
and v.2

respectively, and that after impact their velocities are v\ and i>'2 .

In most practical cases the time of impact is a very small fraction of

a second, and the force is very large, so that it is impossible, without

special appliances, to determine the values of these quantities. But
the value of their product, called the Impulse, can generally be

found without much difficulty. The third law tells us that the im-

pulse is the same for each body, and hence

7>?
1 (v'1 Vj)

= m.2(v v'.2 ).

In addition to this we have the condition, determined experimentally

by Newton,
v\ v'., = e(v., Vi) ,

where e is a constant, less than unity, which is called the Coefficient

of Restitution. This condition asserts that the relative speed of

separation of the two bodies is less than, but is proportional to,

their relative speed of approach. It ceases to be true if the distor-

tion produced by the impact is too great.
If the bodies, after impact, move together with a common speed V,

the first of these equations becomes

This principle is employed in the Ballistic Pendulum, which is

used to determine the speed of a cannon ball or of a rifle bullet. In

this case the mass of the pendulum, m.2 ,
is very large in comparison

with the mass m1 of the bullet, and v.2 is zero. The large relative

value of m.2 ensures that the two masses are moving together with

the common speed V before the pendulum has been sensibly de-

flected from the vertical. The value of V is found by observing the

distance through which the pendulum swings. [From this, the

height h through which the centre of inertia
( 69) is raised is

obtained, and then ( 42) we get V = */%gliJ\

69. Centre of Inertia. In a material system composed of masses

m
a ,
w

, etc., we can always find a point such that the product of its

distance from any plane into the sum of the separate masses is equal
to the sum of the products of each separate mass into its own dis-

tance from that plane.

Let 2(m) denote the sum of the masses, and let 2(md) denote the

sum of the products of each mass into its distance d from one given

plane. We then can obviously find the distance D from this plane
such that

S(wd), ....... (a),
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for this is a single equation in one unknown quantity D. Let this

be done for other two planes, neither pair of the three being

parallel, and we get a fixed point, which satisfies the condition for

these three planes.

Let us suppose, for convenience, that the three planes are at right

angles to each other, and that the lines of intersection are taken as

the axes of x, y, and z respectively. We have then the three

equations similar to the above,

Now, multiplying these equations respectively by any quantities

X, ft, i>, and adding, we get

But X, //,
and v may be the direction-cosines of the normal to any

plane passing through the intersection of the three given planes, in

which case the quantity \x+\iy+vz is the perpendicular upon this

plane from any point whose co-ordinates are x, ?/,
z. Hence

equation (a) is true for any plane which passes through the intersec-

tion of the three given planes.

But equation (a) is still satisfied if we increase D and d by any
constant quantity h, for this simply adds on 2(m)h to each side ;

that is to say, (a) holds for any plane parallel to a given one for

which it is true. Hence, it holds for all planes.

The point so found is called the Centre of Inertia of the given
set of material particles.

By taking the time-rate of variation of the quantities in the above

equation we obtain

2(m)D = 2(w<Z)
and

The former tells us that the momentum of the system in any given
direction is equal to the momentum, in that direction, of a single

mass, equal to the sum of the separate masses, moving so as

always to be situated at the centre of inertia. The latter asserts

that the change of motion of the centre of inertia of any set of

disconnected particles produced by the action of separate forces

on the separate masses is the same as if these forces had been

applied to a mass, equal to the total mass, condensed at the centre of

inertia.

In consequence of the equality of action and reaction between
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material particles, we see that the motion of the centre of inertia

of any connected set of particles is not affected by their mutual
action

;
and that, in the case of a rigid body, we may suppose the

whole mass to be condensed at the centre of inertia, and to be acted

upon by the resultant force. In other words, the equations of

translational motion and equilibrium of a rigid body may be made
identical with those already given in 65 for a material particle.

70. Moment of a Force and of Inertia. The Moment of a Force

as regards rotation about an axis perpendicular to its direction is the

product of the force into the shortest distance between its line of

action and the axis.

A pair of parallel, equal, and oppositely directed, forces is called a

couple. The moment of a couple about any axis perpendicular to

the plane in which the forces act is equal to the product of either

force into the perpendicular distance between the lines of action of

the two. Let r be this distance, and let F be the common value of

the forces, while P is the intersection of any perpendicular axis with

I F

F''

FIG. 49.

the plane in which the forces act. If x is the perpendicular distance

from P to the line of action of one force, r-x is the perpendicular

distance from P to the line of action of the other. Hence, the sum of

the moments of the forces, which is the moment of the couple, is

Fx+F (r-x) = Fr.

Now we may write Fr= mar, where m is' the mass acted upon,

and a is the linear acceleration. But a= a,r, where w is the angular

acceleration. Hence
Fr=wra

.

Three independent equations of this type completely specify the

rotational motion of the given mass.

The quantity mr* is called the Moment of Inertia of the mass m
about the given axis. Multiplying each side of the equation by M<lt

and forming the integrals, we get
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/

if dQ/dt=io, so that 9 is the whole angle through which the mass

has turned. But since rw = v, the linear speed, the quantity on the

right-hand side of the equation is the kinetic energy of rotation.

Hence, we see that the kinetic energy of rotation acquired under the

action of a given couple is proportional to the angle through which

the mass has turned.

If we are not dealing with a single particle, we must write the

sum 2(rar
2
) instead of mr2 in the above equation. But we may still

put the equation in the same form as before by writing

which is clearly allowable, since k (called the radius of gyration) is

the only unknown quantity.

As an example, we shall investigate the motion of a cylinder

rolling (not sliding) down a plane inclined at an angle a to the

horizon. Let r be the radius of the cylinder, and let Jc be its radius

of gyration. The distance through which the cylinder descends

when it turns through an angle 0, is s = rB sin a. If m is the mass

FIG. 50.

of the cylinder, the work done by gravity is mgs=mgr9 sin . This

must be equal to the gain of kinetic energy. The energy in the

rotational form is mW02
,
and that in the translational form is

^m(rO)'
2

. Hence, v(
=

rti) being the speed of motion down the

P^ne, .

Had there been no rotation, we should have had v2 = 1gs; but the

speed of linear motion has been decreased because the potential

energy became transformed in part into energy of rotation.

71. Further Discussion of Moment of Inertia. The moment of

inertia of a body about any axis is equal to its moment of inertia

about a parallel axis through the centre of inertia, together with the

moment of inertia, about the original axis, of a mass, equal to the

whole mass, condensed at the centre of inertia.

The moment of inertia is
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Transfer the origin to P (Fig. 51), the centre of inertia, the co-

ordinates of which are
, /5. Let , rj be the co-ordinates of any

point referred to parallel axes through P. Then

since 2(w), 2(m/) vanish by the properties of the centre of inertia.

To illustrate the importance of this result we shall proceed to find

the moment of inertia of a cylindrical rod, of length 2/ and radius

a, about an axis drawn through its centre perpendicular to its length.

Consider a circular disc of the rod of infinitesimally small thickness

dli. The moment of inertia of this disc about the axis of the rod is

FIG. 51.

2(mr
2
), where r is the distance of the elementary mass m from the

axis, and the summation extends from r= o to ra. If p is the

density of the rod, we may write %*.rdrpdh instead of m
;
for %vrdr

is the area of a small circular ring of the disc, so that litprdrdli

is the mass of a small annular portion of the disc. The moment
of inertia of this part is therefore 2 7rpd7ir

3
dr, and the integral of

this from r= o to r= a is the moment of the whole disc. It is

therefore ^irpdlia*.

Now, since the moment of the whole disc about a central perpen-

dicular axis is

where x and y are the co-ordinates of m referred to any two mutually

rectangular central axes in the plane of the disc, and since 2(wr-)
and 2(m7/

2
)

are respectively the moments of inertia of the disc

about the axes of x and y, we see that the moment of the disc

(or of any plane figure) about an axis in its own plane, drawn

through its centre of inertia, is one-half of its moment about a

perpendicular axis through its centre of inertia.

The moment of the disc about a central axis in its plane is there-

fore ^irpdha
4

. And, if h be the distance of the centre of the disc
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from the centre of the rod, the moment of inertia of the whole

mass (irpa-dh) of the disc, supposed to be condensed at its centre,

about a line passing through the centre of the rod and perpendicular
to its length, is 7rpa'

2dhlr. Hence the moment of inertia of the

disc about this line is 7rp<xM- +W\dli. And, if we sum the moments

of all such discs from li = o to h = I, we get half the moment of

inertia of the whole rod. Taking twice the integral of this quan-

tity between these limits, we find that the required moment is

Iwola1 (f+ 1); that is, M(5+^"), where M is the whole mass of
\4 o / \o 4 /

the rod.

72. Rotational Equilibrium. There is no rotation about a given

axis when 2(Fr), taken with reference to that axis, is zero. Hence,

the condition for rotational equilibrium is that the sum of the

moments of all the forces about three non-parallel axes shall vanish.

The two following examples will serve to illustrate this point.

(1) A uniform ladder (Fig. 52), of length 2Z, rests, in a vertical

plane, upon the ground, and a vertical wall. Find the limiting posi-

tion of equilibrium, the co-efficients of friction becween the ladder

and the ground, and between the ladder and the wall, being p and n'

respectively.

Let be the inclination of the ladder to the ground. Under the

given conditions, there is no possibility of motion except in the

given vertical plane. Hence, there are only three degrees of

freedom, viz., two degrees as regards translation, and one as regards

rotation. The ladder will be in equilibrium, so far as translation is

concerned, if the sums of the forces acting upon it in any two

mutually perpendicular directions are zero. But it is convenient to
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choose those two directions which will lead to the simplest equations.
We might choose the directions along and perpendicular to the

length of the ladder, but each of the consequent equations would

involve all trie five forces which are acting. If we choose the

horizontal and vertical directions, the equations involve respectively

two and three forces only. Therefore, choosing the latter directions,

we get

where S and R are the normal pressures on the wall and the ground

respectively.

The third relation between the quantities is obtained by

equating to zero the sum of the moments of the various forces

about any axis perpendicular to the plane of motion. The simplest

equation is obtained by choosing the axis passing through a point

(either end of the ladder), which lies on the lines of action of the

greatest possible number of forces
;

the reason being that the

moments of these forces are then zero. Taking the lower end

we get

mgl cos = (S"sin a+//S cos a)2Z,
that is

mg cos rt = 2S(sin +/*' cos a),

which is independent of the length of the ladder.

If we suppose the weight of the ladder, and the values of
/<
and /*'

to be given, we may eliminate, by means of these three equations,

the quantities S and R, and so obtain an equation giving a in terms

of known quantities.

(2) A pendulum, of length I and mass m, rotates about a vertical

axis with constant angular velocity w. Express w in terms of </,

the value of gravity, and of 7t, the height of the cone which the

pendulum describes.

Let 9 be the angle which the pendulum makes with the vertical.

The '

centrifugal force '

acting perpendicular to the axis is muPl sin 0.

The portion of this which is perpendicular to the string of the

pendulum, and which acts so as to prevent decrease of 0, is un.rl

sin 9 cos 9. The part of the weight which acts in the same line, but

inwards so as to decrease 0, is mgsmQ. Hence the condition for

equilibrium is

w3
Z cos Q= M2

li = g.

This gives the required expression for w, and shows that the angle 9

is constant.

73. Propagation of Motion through a Non-Rigid Solid. As a
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single example of the motion of a non-rigid solid we shall now
discuss the problem of the passage of a wave along a stretched cord.

Let us suppose the cord to be enclosed in a smooth hollow tube,

and to be drawn through it in the direction of the arrow with speed v.

FIG. 53.

The tension T of the cord will be uniform throughout since the

tube is smooth. . The pressure which the cord, if not in motion,
would exert upon a part of the tube where the radius of curvature

is r would be T/r. Let the cord be in contact throughout a circular

arc PQ which subtends an angle at the centre O. Then, if OE
bisects 0, the resolved part of the tensions along EO is 2T sin 0/2.

If is small this becomes T0= T . PQ/E. But the total pressure

is^PQ, where p is the pressure per unit length of the circle. Hence

R

p = T/E ;
that is to say p is proportional conjointly to the tension

and the curvature.

If m is the mass per unit length of the cord, mv-fr is the ' centri-

fugal force
' when the cord is in motion with speed v. When this

is equal to T/r, i.e., when T = mv2
,
there is no pressure on the

surface. The value of v which satisfies this equation is totally

independent of r, the radius of curvature. Hence, when the proper

speed is reached the pressure is simultaneously taken off all parts
of the smooth tube through which the cord runs

; and the tube,

having served the purpose for which it was used, might now be

dispensed with. All parts of the cord would successively take the

shape which the tube originally impressed upon the portion within

it. And also, since all motion is relative, if the cord were held

fixed with the given constant tension, the wave-form would run
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backwards along it with speed v. Hence the speed with which

any disturbance will run along a cord stretched with tension

Tis

when m is the mass per unit length.

Simple as the above proof (due to Thomson and Tait) is, the

following, deduced from the principle of dynamical similarity, is at

least as simple.

The radius of curvature at similar parts of similar waves is pro-

portional to the length I of the wave. The pressure per unit of

length is therefore proportional to T/Z, so that the pressure per

similar length is proportional to T. Also the mass per similar

length is ml, and hence we get the dimensional equation

where t is the periodic time in which the wave length I is described.

But IJ
t is the speed of propagation, which is therefore equal to

A^T/A/m^ if we adopt the definition of force given in ^ 64.

74. Motion of a Perfect Fluid. A fluid may be set in motion

by the action either of forces which act throughout its volume (for

example, gravitational forces) or of forces which are applied to its

surface (such as external pressure).

A perfect fluid is defined as a fluid in which the pressure is

always perpendicular to the surfaces of contact. It may other-

wise be defined as a fluid which is entirely devoid of internal

friction. Such a fluid does not exist in nature, but we may deduce

various results regarding the motion of perfect fluids which will be

very nearly true for actual fluids which are moving with sufficient

slowness. [When any fluid, whether perfect or not, is at rest, the

pressure is always perpendicular to the surfaces of contact.]

Consider a little cube with edges dx, dy, dz, parallel to the axes

in a fluid of density p. The mass of this little cube is pdjcdydz,

and its acceleration of momentum parallel to the c-axis is pxdxdydz ;

and this is equal to the sum of the forces acting upon the little mass

in that direction. Let X be the force per unit of mass which is

acting upon it, and let p be the pressure per unit of area. The total

pressure on the face of the cube next the origin is jpdydz, and this

acts outwards along the #-axis. When x changes by the amount

dx, p will alter to p + dp, so that the pressure acting inwards along
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the axis is (p -\- dp)dydz. Hence the total outward pressure is

dt)

dpdydz, or as we may write it,
-
-j-dxdydz. Hence we have as
dx

the equation of motion parallel to the ,r-axis

dp

Similarly .. d
W= PY-^,

and jn

[It must be carefully noticed that x, y, and #, represent the total

component accelerations, which may vary independently with the

time and with the position of the small mass : in short, we are

supposed to follow the given portion of the fluid in its motion.]

As an example we shall investigate the motion, under gravity, of

a fluid which escapes" through a small orifice in the side of a

vessel, the depth of the opening below the free surface of the liquid

being z. Take the origin at the free surface, the axis of z being

drawn downwards, and the axes of x and y being horizontal. The

equations of motion are

dp " dp " dp

P--^I*=^: <"-(*-'

g being the acceleration due to gravity. Multiplying these

equations by xdt, ydt, zdt, respectively, and adding we get,

p(xdx+ ydy + zdz) = pgdz

The integral of this is

where v = v^+ 7)2 +^2 tne speed of motion of the fluid and

p u is the pressure on the free surface of the liquid since it is the

value of p when z = o and v = o, which is practically the case when
the area of the opening by which the fluid escapes is very small in

comparison with the free surface of the liquid.

The pressure just outside the opening is p ot and hence we have
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v- = tyz. That is, the speed is that which would be acquired in

a free fall from rest under gravity through a distance equal to the

depth of the opening below the surface of the liquid.

This result may readily be deduced by considerations regarding
the energy of the liquid. The kinetic energy of a quantity m of the

the escaping liquid is |wy
2

. But this energy, which the escaping

liquid carries away with it, is at once restored if we simply pour the

liquid back again into the vessel. And the work done in raising the

liquid through the height % is mgz. Hence, by the principle of

conservation of energy, we have, as before, v2 =
tyz.

Equation (1) shows that, in a moving fluid, the pressure is least

where the speed is greatest. Hence there is less pressure in the

interior of a moving jet of fluid than there is at the outside. Thus

objects immersed in the fluid will be pressed inwards to the centre

of the jet. This explains the support of a light body in a vertical

jet of water or of air.

75. Equilibrium of a Fluid. From the equations of motion of

a fluid we at once get, as a special case, the conditions of equilibrium.
These are

dp, dp dp
pA.
= =

; p i = -y- ; $L = -
.

dx dy dz

If no external forces act upon the liquid, we have the equations

dp dp dp
jr =; :r-

=
; :r= >dx dy Az

which simply assert that the pressure has a constant value at all

points of the liquid.

If we assume that the origin is at the surface of the liquid, that

gravity acts, and that the axis of z is drawn downwards, the equa-

tions are

dn dp dp
~i<-
=

> -T
=

> i =
P9'dx dy dz

The first two assert that the pressure is constant throughout a

horizontal plane, and the last shows that it increases uniformly
with the depth. The integral is

This might have been obtained from (1) of last section by making
v= o

76. Propagation ofSurface-Waves in Liquids. We shall assume,
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for the sake of simplicity, that the waves are all similar, and that

their ridges are parallel equi-distant straight lines. The principle of

dynamical similarity then enables us to deduce easily the law of

propagation.
When the waves are propagated by gravity, the forces are propor-

tional to the density of the liquid, to the value of gravity, and to

the square of the wave-length ; and the masses are proportional to

the density, and to the square of the wave-length. Hence the

dimensional equation

f=ml/t
2
,

(67), becomes
7
o aV . I

or g=ll&,

which gives v2
=gl.

In these equations p represents the density of the liquid, and the

other symbols have the usual significations. We see, therefore, that

the speed of propagation is proportional conjointly to the square
roots of the wave-length, and of the acceleration due to gravity.
Such waves are called oscillatory or free waves.

In the above case, it is assumed that the depth of the liquid is

very large in comparison with the length of the waves. When the

depth is very small in comparison with the wave-length, the above

equations still apply, provided that I represents the depth of the

liquid. For, when similar waves are propagated in liquids of

different depths (the similarity having reference to the depth), we
see that similar masses are proportional to the squares of the depths,
while the ranges of vertical motion are proportional directly to the

depth. Hence the speed of propagation of such waves, which are

called long or solitary waves, is proportional conjointly to the square
roots of the depth and of the acceleration due to gravity.

In the propagation of ripples, surface-tension (Chap. X.) is much
more effective than gravitation is. If T represents the surface-

tension, while I represents the wave-length, the pressure per unit

area of the surface is proportional to T/Z. Hence the pressure per
similar area is proportional to T, for we are not concerned with

lengths measured parallel to the ridges of the waves. The similar

masses are proportional to p and .to Z", and so we get

yu

The speed of propagation of a ripple is therefore proportional
7 9
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directly to the square root of the surface-tension, and inversely to

the square root of the product of the density into the wave-length.
Thus we see that ripples run faster the smaller they are, while

oscillatory waves run faster the larger they are. Hence there is a

certain size of wave (about two-thirds of an inch in length in the

case of water) which runs slowest. Smaller waves run more

quickly because the effect of surface-tension preponderates ; larger

waves run more quickly because of the increased effect of gravity.



CHAPTEE VII.

PROPERTIES OF MATTER.

77. Definitions of Matter. We are now in a position to give one

or two provisional definitions of matter provisional, because we
cannot yet say, possibly may never be able to say, what matter

really is. It may be defined in terms of any of its distinctive

characteristics. We may say that Matter is that which possesses

Inertia. Or again, since we have no knowledge of energy except

in association with matter, we may assert that Matter is the Vehicle

of Energy. Another statement (which, from the results of Chap. I.

and 62, we see to be an objectionable form of the latter) is

that ' matter is that which exerts, or can be acted upon, by force.'

Further knowledge would probably make it evident that these three

definitions are merely differently worded statements of the same

fact.

78. States of Matter. Matter is usually spoken of as existing

in three different states the solid, the liquid, and the gaseous.
A portion of matter in the solid state possesses a definite form of

its own, and considerable force has to be applied in order to produce
an appreciable change in the form. When in the liquid state,

matter, on the other hand, possesses no definite form of its own,
and can be made by application of the slightest force to change
whatever form it happens to have. A similar statement holds in

the case of a gas or vapour. But a gaseous body differs from a

liquid in that its volume is limited only by the volume of the closed

vessel in which it is contained
; while the volume of a given quan-

tity of liquid is perfectly definite, under given physical conditions,

however large the containing vessel may be.

Still although these rules are of general applicability it must

not be supposed that there is any hard and fast distinction between a

solid and a liquid, or between a liquid and a vapour : possibly (but there

is no experimental proof of the truth of this statement) there maj" be,
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under certain physical conditions, no sharp line of demarcation

betwet-ji the, solid and.the vaporous states of matter.

As the temperature of sealing-wax is gradually raised, the sub-

stance slowly passes from the solid into the liquid condition, and, for

some time, we cannot strictly call it either a liquid or a solid. The
transition from ice to water seems to occur suddenly, but analogy
would indicate that the process is really a continuous one. We shall

also find (Chap. XXIII.) that the passage from the vaporous to the

liquid condition may be made without break of continuity.

[A very notable and extremely important example of the non-

rigidity of the above distinctions occurs in the case of shoemakers'

wax. This substance so far resembles a brittle solid that it will

break into splinters under the blow of a hammer
;
and yet, under

the action of slight long-continued forces, it can be moulded into any

shape we please.]

The extreme form of the gaseous condition, which is known as the
'

ultra-gaseous
'

or ' radiant '

state of matter, will be discussed in

Chap. XIII.

79. General Properties. Certain properties are common to all

portions of matter in whatever state or physical condition they may
be, and are, therefore, called general properties.

Chief among them is the already-mentioned property of inertia,

which requires no further discussion at present.

Again, all matter occupies space ; and we consequently say that

it has the property of extension. This subject has been considered

in Chap. III. But the occupancy of space further involves the idea

of form, and so we recognise form as a property of matter. There

is little more to be said on this point except in the case of the form

of crystallised bodies, to the consideration of which a considerable

part of Chap. XII. will be devoted.

So far as we know any one portion of matter occupies a given por-

tion of space to the utter exclusion of all other matter. This cer-

tainly holds in the case of any visible portion. Hence we look upon

impenetrability as a general property of matter. But the quality of

impenetrability does not interfere with inter-penetration of matter,

the possibility of which depends upon the existence of pores in any
finite portion of matter. The corresponding property is called

porosity. All matter is more or less sponge-like in structure, the

space in the so-called ' internal
'

pores being in reality external to

the material of the body. In the case of substances such as cork,

wood, coarse sandstone, etc., the porosity is very evident. The

porosity of metals is shown by the fact that gases can pass through

them. Thus palladium has a remarkable power of absorbing or
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'

occluding
'

hydrogen ; carbonic oxide passes readily through red-hot

iron ; and gases formed by the decomposition of electrolytes pass

through the metallic electrodes. Bichromate of potassium passes
into the pores of glazed earthenware, and, crystallizing inside,

gradually breaks up the substance. The porosity of liquids is

evidenced by their absorption of gases.

Vitreous bodies alone have not yet been directly shown to be

porous; but we may fairly conclude that we have not yet found

the proper method of testing the point, and that, the proper method

being found, they too will prove to be no exception to the rule.

A very noteworthy example of interpenetration occurs in the

alloying of certain metals, such as tin and copper. The bulk of

this alloy is considerably less than the sum of the bulks of its

constituents. This phenomenon does not occur when gold and

silver are alloyed, and for this reason only was Archimedes' famous

test of the impurity of Hiero's crown conclusive. A certain weight
of pure gold had been given to a smith for the purpose of making
the crown ; but it was suspected that he had abstracted some of

the gold, replacing it by an equal weight of silver. Archimedes

knew that, weight for weight, silver is bulkier than gold; and

hence he concluded that the crown would be bulkier than the given
amount of pure gold if silver had been used as an alloy. The

problem which he required to solve was therefore the determination

of the bulk of a solid which was so irregular in shape that no

method of estimation by direct measurement was applicable. He
determined this by measuring the volume of the water which

the crown displaced. Had contraction taken place, the bulk and

weight of the alloy might have been the same as those of the pure

gold.

Another property of all matter is divisibility. The question of

the infinite divisibility of matter will be further alluded to in the

chapter on the constitution of matter. In the meantime we are

only concerned with examples of extreme division. Many such

occur readily. Films of gold and of other metals may be made so

thin as to be transparent. A film of gold precipitated by chemical

means and burnished so that it forms a continuous sheet may be of

no greater thickness than one ten-millionth part of an inch. A
quartz -fibre may be made so fine as to be utterly invisible. The

vapour from a particle of sodium will tinge a flame continuously of

a deep orange colour for hours at a time. A single drop of a strongly

coloured liquid will continuously tinge a very large quantity of

water, and its presence may be made evident by chemical means

long after the eye ceases to detect it. Further examples of the
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extreme smallness of portions of matter will be given in the chapter
on the constitution of matter.

All matter is capable of having its volume diminished under

pressure to a greater or less extent, and so we speak of its compres-

sibility. This subject will receive detailed treatment in Chaps. IX.,

X., and XI.

Again, all matter is deformable. But it is often more convenient

to speak of its rigidity than of its deformability, that is, the pro-

perty in virtue of which it resists deformation. This question, too,

will be discussed subsequently.
We shall also afterwards consider more specially elasticity, which,

in one or other of its two forms, exists in all kinds of matter
;
and

viscosity, that is, the property in virtue of which there is resistance

to relative motion of the particles of a body. Expansibility will

be dealt with in Chap. XXII.

Weight which, though a universal property of matter, may be

looked upon as a purely accidental property, seeing that it requires
the existence of two separate masses in order that it may appear
will be fully considered in the chapter on ' Gravitation.' (See also

Chap. VI., 64.)

80. Special Properties. Many other properties might be enume-
rated which are conspicuously present in some substances, and are

as conspicuously absent from others, such as plasticity, ductility,

brittleness, tenacity, etc. Again, many properties refer to matter

in connection with special forms of energy ;
for example, dispersive

power, thermal and electric conductivity, magnetic permeability,

translucency, opacity, etc. Indeed, all the properties of matter

might be naturally investigated in a treatise on energy ; for we have
no notion of what might be the properties of matter devoid of

energy. Most probably it would not be matter at all in the sense

in which we use the word.

81. Specific Properties. Many of the properties of a body depend

upon the size of that body. Thus a portion of a given substance is

more massive than another portion of the same substance in pro-

portion as its bulk is greater than the bulk of that other.

It is frequently very essential to define a property of a body in

such a way as to make it independent of the size of any particular

specimen. For example, the density (specific mass) of a substance

is the mass per unit volume of that substance ; the specific gravity
is the weight of unit volume, expressed in terms of that of water as

the standard ; the specific weight might be defined as the weight

per unit volume, expressed in absolute units. We also define

rigidity, viscosity, etc. ( 108, 128) as specific properties.
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82. Molecules and* Atoms. A visible portion of any chemically

compound substance, e.g., water, may be divided into smaller parts

each of which has the same chemical peculiarities as the whole had.

These parts may even be so small as to be invisible to the most

powerful microscope. But at last a stage is reached where further

division cannot occur without the production of substances which

are chemically different from the original one. These smallest

parts, which are chemically similar to the whole, are called mole-

cules.

Every molecule can be divided further into what are termed its

constituent atoms. These atoms are dissimilar when the molecule

is complex like that of water : they are all precisely similar in a

simple molecule, such as that of hydrogen. An atom is an

indivisible part that is, indivisible by any means at present at our

disposal. In all probability, it is really compound.
A substance wrhose molecules are composed entirely of similar

atoms is called an '

elementary
'

substance, and the kind of matter

composing it is called a ' chemical element.' We know of the

existence in nature of only a comparatively small number of

elements.

One fact of the utmost importance is this that wherever in space
it may be situated, or howsoever it may be circumstanced physi-

cally, an elementary molecule or atom has absolutely unalterable

properties. A molecule of hydrogen (for example) in the most

distant nebula is precisely similar to a molecule of that substance

on the earth's surface. We shall return to this point later on.

83. Molecular Forces. A considerable, frequently a very great,

amount of work is necessary in order to separate the molecules of a

body. When separated, we are accustomed to say that they possess

potential energy of molecular separation the increase of potential

energy being equivalent to the work spent in producing the separa-

tion. If e, the energy, increases by the amount de when the distance s

between the molecules is increased by the quantity ds, the work spent
is represented also by the quantity

de=ds.
ds

The quantity dejds the space-rate of variation of the energy
is called the molecular force against which the work is done

(see 29). That is to say, we figure the molecules to ourselves as

held together by certain forces which maintain them in their

relative positions.

The work done in separating two molecules beyond the range of
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their mutual forces is usually great, and practically the whole of it is

performed in an excessively short distance. Hence de/ds is very

large ; and so it is said that the molecular forces are extremely power-

ful, but that they are insensible at sensible distances. In confirmation

of this we may firmly press together two leaden bullets at a part
where their surfaces have been freshly cleaned. They will cling

together so that the lower one may be lifted by means of the upper,
the magnitude of the so-called molecular forces at the surface of

contact being sufficient to overcome the gravitational attraction of

the whole earth. If there is a film of oxide on the metal the

experiment will not succeed, the thickness of the film being too

great to allow of appreciable molecular attraction. (For further

statements on this subject, see Chap. XII.)

Many of the properties of matter may be said to depend on the

nature of the molecular forces. Tenacity depends upon the extent

to which these forces can overcome external forces which tend to

draw the molecules apart. Malleability is a property essentially

analogous to the preceding. It is the property in virtue of which a

substance may be extended in two directions, while it is contracted

in a direction perpendicular to these by the application of great

pressure, its volume remaining practically unaltered. In testing

tenacity the extension occurs in one direction only, and there is

contraction in all directions perpendicular to that one. The brittle-

ness of a body is due to the comparative ease with which the mole-

cules can be separated beyond the range at which their mutual

forces are appreciable. Eigidity depends upon the ability of the

molecular forces to resist alteration of the relative positions of the

molecules of a body. We therefore recognise two kinds of rigidity

rigidity as regards bulk, and rigidity as regards form. Viscosity

depends upon the ability of the forces to resist shearing motion.

84. In the immediately succeeding chapters, a more detailed

examination of some of the most important of the properties alluded

to above will be given. Others will be treated as occasion may
arise subsequently.



CHAPTEK VIII.

GRAVITATION.

85. ALL bodies in the neighbourhood of the earth's surface possess

potential energy, which, when circumstances permit, is invariably

changed into kinetic energy of motion towards the earth. Hence
we say that each body is

' attracted
'

to the earth with a force which

is termed its
'

weight.'

Bodies, made of the same material, may be roughly judged to

be heav3
r in proportion to their bulk, i.e., in proportion to the

quantity of matter contained in them. But we need not rest

content with a roughly approximate rule, for the law that weight
is proportional to mass is capable of as rigid proof as can be given

by the most accurate physical methods.

In the first place every body except in so far as the resistance

of the air is concerned takes the same time to fall through a given
distance. In other words, the acceleration of motion is the same

in all cases. Hence, by Newton's Second Law, the force (weight)

is proportional to the mass.

The fact that the time of oscillation of a simple pendulum is inde-

pendent of the mass of the bob furnishes a more readily obtainable
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proof of the proportionality of weight and mass. Let 9 be the

angle through which the pendulum is deflected from the vertical.

If w is the weight of the body the force acting in the direction of

motion is w sin 9
; which, for small angles, is practically wQ. This

must be equal to the acceleration of momentum, which is ml9,

if I is the length of the pendulum. Hence iuQ = mW\ and there-

fore ( 51)

a and a being constants. This shows that the motion is simple

harmonic. And the time of a complete oscillation is

2,v^
since the value of 9 is unaltered if we increase t by this amount.

Now experiment shows that this quantity is constant when I is

constant. Hence w is proportional to m.

Again, a body has the same weight whether its surface is large

or small, and whether it is in a single lump or broken up into parts.

This proves that the outer parts do not screen the interior parts

from the action of gravitation. Indeed, perpetual motion could

ensue if this were not so ; for, if matter were placed between one

half of a vertically mounted wheel and the earth, the other half of

the wheel would be permanently heavier.

86. The truth of Kepler's Laws regarding the motion of a planet

would prove that the force of attraction between the planet and the

(fixed) sun is in the direction of the line joining their centres,

and is inversely proportional to the square of the distance between

them. These laws are :

I. Each planet moves in an ellipse of which the sun occupies

one focus. (The path of a comet may be any conic section.)

II. In that ellipse the radius-vector traces out equal areas in

equal times.

III. The square of the periodic time is proportional to the cube

of the mean distance between the planet and the sun.

If equal areas are traced out in equal times, the quantity

is zero ( 50), which means that the attraction is central, and the

magnitude of the central attraction is (43) r-r'02
. Now the
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equation of any conic section referred to a focus as pole is

r = I/a (1 -f-e cos 0), a being the semi-axis major, and e being the

eccentricity. Hence (writing r-Q = h, from which we a't once find

we easily obtain by the methods of Chap. V., r rt?
2 = ah-fr

2
,

which shows that the force is attractive and varies inversely as

the square of the distance. Finally, since r2 = h, we have

a2
(l + e cos 9)dO = hdt ; and the integral of this throughout a com-

plete revolution, i.e., from 9= o to 9 = 2?r, is lit = 2rf. But if p be

the acceleration at the mean distance, a, so that h2 = pa, we find

4^%3 =
/*

a 3
. And so, from the third law of Kepler, we deduce the

result that gravity depends only on the quantity, and not on the

quality, of matter ;
for any two bodies, having the same mean

distance from the sun, would have the same periodic time, provided

only that their masses were the same.

87. If, from the above evidence, we now assert Newton's great

Law of Gravitation that Evert/ particle of matter in the universe

attracts every other particle with a force whose direction is that

of the line joining the two, and whose magnitude is directly as the

product of their masses, and inversely as the square of their dis-

tance from each other, we see that Kepler's Laws cannot be strictly

true. In the first place all the bodies in the solar system (including

the sun) will revolve about the centre of inertia of the system,

which is not necessarily nor actually situated at the sun's centre ;

and again, their paths cannot be true ellipses because of mutual

attraction.

But we know that Kepler's Laws are not strictly true ; and,

further, the deviations from them are precisely such as should

result from mutual attraction amongst the various planets. Indeed,

by assuming the truth of Newton's Laws of Motion and of the Law
of Gravitation, Adams and Leverrier were able to predict in-

dependently the existence and position of the previously unknown

planet Uranus.

The law of gravitation is supported by almost as strong proof as

any theoretical statement can possibly have.

88. So far as we have gone we have looked upon the sun and the

planets as mere material points. The justification of this is con-

tained in the latter of two theorems due to Newton : 1, A
spherical shell composed of uniform gravitating matter exerts no

resultant attraction upon a particle in its interior ; and, 2, it
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attracts an external particle as if its whole mass were condensed

at its centre.

Let A be a point external to the spherical shell PQQ'P', the

centre of which is at 0, and the density of which per unit surface

is p. Draw a cone, APQ, of infinitely small angle oj, having its

vertex at A, and intercepting small surfaces of the sphere at P and

Q. These surfaces are equally inclined to APQ, and so the masses

which are cut off at P and Q, being equal to wpAP
2 sec OPQ and

wpAQ2 sec OPQ respectively, attract a particle at A equally. Now
take an exactly similar cone at AP'Q', equally inclined to, but on

FIG. 56.

the opposite side of, AO. The elements of the shell at P and Q attract

the particle at A equally. Let PQ' intersect AO in R. The position

of R is obviously independent of that of P, and hence R is the vertex

of a cone, of angle w', say, which intercepts the same elementary
areas of the shell at P and Q' as the cones APQ and AP'Q' inter-

cept. The masses are therefore /pPR
2secOPR and w'pQ'R

3secOPR

respectively ; and, since OPR = OAP, their resultant attraction

on unit mass at A is

'PR*
,
Q']

But PR/PA = BR/BA = OP/0A = Q'R/Q'A, and so the resultant is

Hence, summing all such quantities for each similar pair of ele-

ments, the whole attraction of the shell is 4?rp OP2

/OA
2 in the

direction AO. And so the proposition is proved, since 4;rOP2
is the

whole surface of the shell.

Since the proposition is true of a shell, it is also true of a solid
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sphere, which may be regarded as built up of a number of such

shells. It is, therefore, practically true of the planets and of the

sun
;
for the planets, even although in no case strictly composed

of uniformly dense concentric layers, are yet at distances from the

sun which are large in comparison with their own dimensions.

[When A is inside the shell, P and Q are on opposite sides of it,

and so the truth of the first theorem above is established.]

The above case furnishes one example of that limited class of

bodies which attract, and are attracted by, external bodies, as if

their whole mass were condensed at a definite point, called their

A

Ef

FIG. 57.

centre of gravity. Another example is given in 317. The centre

of gravity, -when it exists, always coincides with the centre of

inertia.

89. The second theorem is made use of in Cavendish's method of de-

termining the mass (and, consequently, the mean density) of the earth.

Two small leaden balls, of mass m, are attached to a light rigid

rod or tube, ab, which is attached at its middle point to a vertical

wire. The couple required to twist the wire through a given angle
is determined by observations upon the time of oscillation of the

system. Two large leaden balls of mass M, which were originally

in the positions A' B', are placed in the positions A, B. The
mutual attractions of the balls A and a, B and b, deflect ab from its
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normal position, and it oscillates about a new position. The angle

through which ab is deflected is determined by means of a beam of

light reflected from a mirror which is fastened to the suspending
wire. Similar observations are made with the large balls once more
in the positions A', B', and finally in the positions A", B", at the

same distance as before from ab, but on opposite sides of them, so

as to deflect ab in the opposite sense. The mean of the deflections

is taken, and the couple required to produce it is known. In this

way the attraction between the two masses M and m, their centres

being at a given distance r apart, is found
;
and it may be compared

with the attraction of the earth upon the small ball. The mass of

the earth being p, and its radius E, we have &/t/B
3=M/r2

. This

where p is the mean density of the earth, and Jf is a constant.

Professor C. V. Boys has recently succeeded in drawing out

extremely fine fibres of quartz, the torsional rigidity of which is

so small that, by their means, the mutual attraction between two

lead pellets can easily be made manifest.

90. The Schehallien experiment, undertaken with the object of

determining the value of p, was of precisely the same nature. The

deflection of the bob of a pendulum from the true vertical under

the attraction of the mountain Schehallien was obtained by

determining the apparent difference of latitude of two places one

being situated to the north, and the other to the south of the

mountain by means of a pendulum used as a plumb-line. If

from this we subtract the true difference of latitude of the places,

we get a measure of the attraction of the mountain upon the bob of

the pendulum as compared with the attraction of the earth upon it ;

for the attraction of the mountain pulls the pendulum from the

vertical in such a way as to increase the apparent latitude of the

northern point, and to diminish that of the southern. The great

objection to this method lies in the fact that our knowledge of the

.mass of the mountain is necessarily very imperfect.

Yet another method consists in observing the times of oscillation

of pendulums of the same length, one of which is situated at the

top, and the other at the bottom, of the shaft of a coal-pit. In this

way we get a comparison of the attractions of the whole earth, and

of the earth minus a shell of thickness equal to the depth of the

mine, upon a mass situated at known distances from the centre.

Here, again, uncertainty arises, because of our limited knowledge

of the density of the earth's crust, which must be assumed to be
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equal to that in the neighbourhood of the shaft. This is called the

Harton experiment, because it was performed at the Harton

mines.

The value of the mean density of the earth obtained by the

Schehallien experiment is considerably less than, and the value

obtained by the Harton method is considerably greater than, the

mean of the (very closely accordant) results obtained by different

experimenters who used the Cavendish method. Their results

show that the mean density is about 5 '5 times the density of

water.

Hypotheses Framed to Explain Gravitation.

91. Various attempts at an explanation of gravitation have been

made all more or less unsatisfactory.

One of the most noted of these is Le Sage's hypothesis of ultra-

mundane corpuscles. According to Le Sage, gravitation is due to

the bombardment of bodies by numberless small material particles

which are darting about in space with great speed in all direc-

tions. A single material body placed in space would not be im-

pelled in any one direction more than in another, for the corpuscles

would batter it equally on all sides. But two bodies in space would

be driven together provided, at least, that their distance apart were

small in comparison with the free-path ( 148) of the corpuscles

for those sides of the bodies which face each other would be shielded

to a greater or less extent from the bombardment. If the dimen-

sions of the bodies were very much smaller than their distance

apart, the force of attraction (the incongruity of which term is

evident from the fact that the force is here really one of impulsion)

would vary in direct proportion to the cross-sectional area of each

of the two bodies as seen from the other. But this is not the

gravitational law. In order to obtain it, we must make the

supposition that the molecules of matter are so far apart that the

number of corpuscles which pass completely through (say) the

earth, without striking any part of it, is enormously larger than

the number of those which are stopped by it. In this case, every

molecule in the interior will be bombarded equally with an exterior

particle. The force also will be inversely as the square of the

distance, and so we get Newton's Law.
In order that the planets should not experience appreciable

resistance to their motion around the sun, it is necessary to assume,

further, that the speed of the planets is zero relatively to that of

the corpuscles. And this indicates one great defect of the

hypothesis ;
for the energy of the corpuscles which must be spent

8



114 A MANUAL OF PHYSICS.

in the maintenance of gravitation would be sufficient, by its

transformation into heat, to completely volatilise any material

substance of which we have knowledge.
92. The law of gravitation may be worked out into all its conse-

quences (at least, so far as our methods avail) without any know-

ledge of the mechanism by which it occurs. We require merely to

assume that it acts directly at a distance. But, as Newton

remarked, no one competent to think correctly on physical matters

will be content with this assumption. He himself suggested the

rarefaction of the ether in the neighbourhood of dense bodies as a

possible explanation. Sir W. Thomson has pointed out a dynamical
method of producing this diminution of pressure. An incompressible

fluid, filling all space, which is brought into existence, or is annihi-

lated, at the surface of every particle of matter at a rate propor-
tioned to the mass of that particle, and which is annihilated, or

produced, at an infinite distance, at the same total rate would supply
the necessary means. .(See 74.)

Waves traversing a medium would have the effect of making
bodies immersed in it approach each other.

The property of dilatancy (Chap. XXXIII.) in a medium com-

posed of rigid particles in mutual contact would also account for a

gravitational action on bodies placed in it.

A certain stress in Maxwell's electro-magnetic medium (Chap.

XXXII.) would account for it too. So, as we have seen, would

Le Sage's ultra-mundane corpuscles. But, to every provisional

hypothesis yet brought forward, some objection, more or less con-

clusive, may be advanced.

If gravitation be due to action propagated through a material

medium, its propagation through finite distances must occupy a

finite time. We can assert merely that the speed of propagation

is large in comparison with planetary velocities ;
for no such modifi-

cation of the planetary motions, as would be entailed were it other-

wise, is observable.

The Nebular Hypothesis.

93. Various nebulae, when examined under sufficiently high mag-

nifying power, are seen to be merely groups of stars like our own
stellar system. But others cannot be so resolved ; and, among
them, there is great variety of constitution. Some appear to be

comparatively uniform throughout, while others seem to vary

greatly in density at different parts. Others, again, have very dense

nuclei with a faint nebulous surrounding.

Such facts as these suggested to Laplace his famous Nebulae
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Hypothesis. According to this hypothesis, we see in these nebulae

solar systems, such as our own, in various stages of formation. The
sun was formed by the mutual gravitation of its parts from a

state of diffusion throughout space. And, to account for its rotation,

these parts must have had the same amount of moment of momen-
tum about an axis as that which the sun at present has. In all

probability they had small translational velocity before they began
to gravitate towards each other small, that is, relatively to the

speed which they would acquire under the action of gravitation ; for,

if this were not so the chance of their colliding would be vanishingly
small. The collision of these parts would produce great heat, which

would result in the production of a nebula, extending beyond the

orbit of Neptune, and slowly revolving on its axis. As the nebula

gradually shrank, its angular velocity would increase until, by
' centri-

fugal force,' a ring of matter was left behind as the body of the nebula

still farther shrank. The breaking up of this ring (which would

usually occur, as dynamical principles show), and the subsequent

agglomeration of its parts, would result in the formation of a planet.

And so the development would proceed.

Laplace's hypothesis cannot, as he originally stated it, give a, full
account of all the phenomena of our solar system ;

but this we do

know, that some such hypothesis must be true if our sun's heat has

had a physical origin such as our present knowledge is adequate to

explain. We cannot conceive of any store of energy, sufficient

to account for the immense radiation of heat from the sun, except

the potential energy of separated masses of gravitating matter.

Potential.

94. Since any force / is equal to the space-rate of variation of

the kinetic energy of the material system upon which it acts, and

since, by the principle of conservation, the change of kinetic energy
is equal and opposite to the change of potential energy, we may
write ,de dV

where V represents the potential energy.
The value of the quantity V depends upon the instantaneous

position of the material system, and also upon the mutual configura-

tion of its various parts.

We may define the mutual potential energy of two material

bodies in any given relative position, as the amount of work which

may be obtained by allowing them to move, under their mutual

repulsion, to an infinite distance apart. And, of course, this

82
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definition implies that we choose the configuration of infinite distance

as the configuration of zero potential energy.
The Potential at any point, due to any given distribution of

matter, is the mutual potential energy between that matter and
a unit of matter placed at the given point. To find its value

we have only to multiply the force at any point of the path, along
which the unit of matter is repelled, by the infinitesimal element,

ds, of the path, and to sum all such quantities from the given posi-

tion to an infinite distance. This quantity is represented by the

symbol

the meaning of which is that we are to find the general value of the

integral oifds ; to replace in it, first, s by oo
; second, s by its actual

value at the given point ; and, finally, to subtract the latter quan-

tity, so found, from the former. This makes the work which is

done depend only upon the initial and the final positions of the unit

of matter a condition which must be satisfied if the forces are

consistent with the principle of conservation. For, if the work

depended upon the path along which the matter was repelled, we

might cause it to return, by frictionless constraint, to its former

position, by a path which necessitates an expenditure of less work

than that which was done upon it by repelling forces. In such a

case there would consequently be a continual gain of energy without

any corresponding expenditure.

Let us suppose, for example, that the mutual force is repulsive

and inversely proportional to the square of the distance, s, between

the two portions of matter. Let s increase from s to -s'. The work

which is done is

where m is the mass of the repelling matter, and we assume that

the law of repulsion is similar to Newton's law of attraction, and

define unit force as the force between two unit masses placed at unit

distance apart. The general value of the integral is ( 35, example (3) )

and the work is therefore
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If we now put s'= oo
,
the second term disappears and we see that

the value of the potential is

and the repulsive force is

95. Gravitational Potential. When the force is attractive, as in

the case of gravitation, the potential denned as above becomes

V=---
s

The potential is therefore essentially negative ; that is to say, work

is done against the forces when the distance between the particles is

increased. But it must carefully be observed that the fact of the

potential energy being negative, at distances less than infinite, is

due entirely to our having, for convenience, chosen infinite distance

apart as the configuration of zero potential. The increase of

potential energy is positive as we pass towards infinity. Still, to

avoid the inconvenience of defining the gravitational potential as a

negative quantity at all finite distances, it is preferable to change
the sign and write, in this case also,

y_ m
s

dV

where / is to be understood as signifying inward or attractive force.

The potential V, therefore, does not represent the mutual potential

energy. It is the exhaustion of potential energy which occurs when
the unit of matter passes from infinity, under the attractive forces,

to the position s.

The potential at any point, due to a number of separate masses,
is simply the sum of the separate potentials due to each mass.

96. Equipotential Surfaces. Lines and Tubes of Force. Any
surface over which V is constant is called an Equipotential Surface ;

and a line, the tangent to which at any point is always in the

direction of the force at that point, is called a Line of Force. Each
line of force is a possible path along which a material particle would
move under the given forces.

Since dV is zero as we pass from one point to another point of an

equipotential surface, it follows that the force at any point of such

a surface has no component along it. In other words, the lines of

force are everywhere perpendicular to the equipotential surfaces.
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No two different equipotential surfaces can intersect with one

another
;
for this would imply that a finite change of potential would

follow an infinitely small displacement of a material particle, i.e.,

the force would be infinite at any such intersection, and no examples
of infinite forces occur in nature.

If, through every point of an infinitely small closed curve drawn
on an equipotential surface, we draw lines of force, a tube of

infinitely small section will be formed. Such a tube is called a

Tube of Force.

Necessarily, the lines and tubes of force can originate only at

a point where matter is situated ; for the force owes its origin to

the presence of matter. And if, at any point of space, a force

f exists, we may draw an infinitesimal tube of force, so as to con-

tain that point and to enclose f lines of force per unit area of its

normal section. The number of the lines of force per unit of

sectional area therefore indicate the intensity of the force at the

given point.

If a given portion of a tube does not contain any matter, the

number of lines which it contains remains constant, since no line can

end in its interior, and none can pass out through its sides. This gives

where f is the force at any point of the tube at which the sectional

area is a, and c is a constant, numerically equal to the number of

lines which the tube contains.

97. Special Applications. (1) Let the attracting body be sym-
metrical about a point. In this case the tubes of force are cones,

and the area of any normal section of each of them is proportional to

the square of its distance from the point of symmetry. Hence the

above equation shows that the force at any point is inversely pro-

portional to the square of the distance of that point from the point

of symmetry, say

(2) Let the attracting matter be symmetrically arranged about an

infinitely long straight axis. The equipotential surfaces are concentric

cylinders whose common axis coincides with the axis of symmetry,
and the tubes of force are wedges bounded by axial planes. The

section is proportional to the distance from the axis, and therefore

the force is inversely proportional to that distance, i.e.,
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(3) Let the matter be arranged homogeneously in infinite parallel

planes. The equipotential surfaces are planes parallel to these, and

the tubes of force are cylinders arranged perpendicularly to the

planes. Consequently the force is constant at all distances, say

98. Total Force over a Closed Surface. Draw any closed

surface S (Fig. 58), and,

(1) Let m be a massive particle, outside the surface, to which

the force is due. Draw any infinitesimal tube of force, mnp, cutting

the surface at n and^?. (Of course, it may cut the surface in any
even number of places.) The total force over the portion of the

surface intercepted by the tube at n, is equal to that over the

portion intercepted at p ; but, in the one case, the force is directed

outwards over the surface, while, in the other, it is directed

inwards. Hence, by consideration of an infinite number of such

FIG. 58.

tubes of force intersecting all parts of the closed surface, we see

that the total inward force over the whole closed surface, due to a

material particle situated at an external point, is zero. [The use

of the word inward, of course, implies that the force is to be

reckoned as negative when it is outwardly directed.]

The same proof applies in the case of any number of material

particles.

(2) Let the particle, of mass m, be placed within the closed

surface. Draw a sphere, with unit radius, from the point m as

centre. The area of this spherical surface is 47r, and the force at

any point of it, due to the attraction of the central particle, is

equal to m. The total inward force is therefore 4-n-m. But, by the

result of 96, the total inward force over this surface is equal to

that over the given surface S. Hence, if m be the whole amount

of matter contained within S, the total inward force over the whole

closed surface, due to matter of amount m enclosed within it, is
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These results may be symbolised thus,

/NdS = or 4tirm,

where N rep esents the number of lines of force which cross the

surface S per unit of area in the part where the element of surface

dS is taken.

99. Special Applications. We may apply these results to the

determination of the values of the constants a, b, and c, in 97.

In example (1) of that section, the whole number of lines of

force which cross any closed surface surrounding the spherical

distribution of attracting matter is 47rm, where m is the whole

amount of matter. Hence, if we suppose the enclosing surface to

be a concentric sphere of radius s, we get as the total force

Therefore

Similarly, if, in example (2), we consider the force due to the

matter m contained in unit of length of the cylindrical distribution,

we get

for 27TS is the area of unit of length of a concentric cylinder of

radius s.

Therefore b = 2m.

Again, if (example (3) ) we draw a right circular cylinder of unit

radius, perpendicular to the infinite planes, and close its ends by

parallel planes on opposite sides of the given plane distribution of

matter, the force exerted over the two ends is

27r/= 2?rc =
so that c = 2w.

In particular, if the given distribution consists of an infinitely

thin plane layer, of infinite extent, and of finite surface density a,

the force at any point is

/ = 2m = 2.

[Such a distribution cannot occur in the case of gravitational

matter, but the problem has a direct application in the theory of

electricity.] It follows that the force at any point just outside a

surface on which matter is distributed is normal to the surface and
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equal to 2;r(r provided that the surface is of finite curvature ; for

the point may be taken so close to the surface that, as seen from it,

the surface is practically an infinite plane ;
that is to say, any

infinitely small portion of the surface is plane, and the point may
be taken infinitely close to this portion in comparison with its

dimensions, infinitely small though they be.

.
100. In the case just considered, the normal force at the two

sides of the surface are respectively /= 27r<r, and/' = - 27nr. The
total change of force in crossing the surface is therefore

This shows us how to distribute matter over a given surface in

order to produce a given change in the value of the normal force
in passing from one side to the 'other.

We may write this expression in the form

where V and V are the values of the potential at each side of the

surface, while dn and dn' are measured along the outwardly drawn
normals on each side. This enables us to calculate the distribution

of matter when the discontinuous distribution of potential is

given.

It is easy also to obtain an expression for the volume-density of

matter which is required to produce a given continuous distribution

of potential.

For, since the force /outside a symmetrical spherical distribution

of matter is
( 99) given by the equation

the value of / just outside the sphere is /= m/r
2
(which, we may

observe in passing, proves Newton's theorem, 88). But m is

equal to 4/3 . Trpr
3

,
if the sphere is of uniform density p ;

in which

case, therefore, /= 4/3 . ?rpr. That is

dV 4

whence - V = ?7rpr
2+ C (a constant) .

3

Now, if we take the origin of co-ordinates at the centre of the

sphere, we have
>- = 3? + 7/2 + zi .

whence drjdx = xjr, dr/dy = yjr, drjdz = z/r, for, since x, y, and ,
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are independent variables
( 28), we must assume y and z to be

constant when x varies, and so on. Therefore we get

dV4 dr4

#V=4

And, similarly,
- 1- =

;

whence

4

Around any point in space throughout which matter is distributed

with density p, describe a sphere which is so small that the density
of the matter which it' contains is sensibly constant. We may
suppose all the attracting matter to consist of two portions that

which is within the little sphere, and that which is external to it.

We may divide the whole potential V into two parts, Vi and V2 ,

of which the former is due to the sphere and the latter is due to the

matter external to the sphere. Vi therefore satisfies the equation

p being the density of the matter which produces the potential Vi

at the given point. But the matter outside the sphere does not

contribute to the density at the given point within. That is, at the

given point, the density of the matter which produces the potential

V2 is zero, and therefore

\dx'2
+ -VV =

FIG. 59.

Consequently, by addition, we get quite generally

d*V + d^\_+~*~
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This shows us how to distribute matter throughout space, so as to

produce a given continuous distribution ofpotential.
The above result may be obtained in a totally different manner,

which is even simpler, and which will make the meaning of the

equation more evident.

Take three rectangular axes at any point o (Fig. 59), and draw a

little parallelepiped at this point with its edges parallel to the a?, y,

and z axes ;
and let the lengths of the edges be 8x, dy, Sz, respectively.

Eesolve the forces in the neighbourhood of the parallelepiped

into their components parallel to the axes. This will not alter the

result of 98 ; and we may now draw the lines of force perpendicular
to the various small surfaces.

Let nf be the number of lines of force which cross unit area of

the face of the parallelepiped which passes through the origin and

is perpendicular to the x axis. The total number of lines which

cross that face is therefore n^yd*, since Sydz is the area of the

face. Similarly the number which cross the parallel face at the

distance dx from the former is

Now the lines which cross the former face are due entirely to matter

outside the little volume, and they therefore cross the parallel face

also. Hence the total number of lines which enter the little

volume from without by the two faces is

the difference of these two quantities. By similar reasoning for

the other pairs of faces we find that the total number of lines which

enter the little volume (that is, the excess of those which enter over

those which leave) is

(dnx +
dny + dn.

\ dx dy dz

But, by 98, this is equal to ^TrpdxSySz, where p is the density of

the matter contained in the volume dttfyfy. Therefore

dn r . dnv . dn x A

-^ +-4
+ -^=^-

And the result is independent of the size of the little volume ; so

that the meaning of the equation is that the volume density at any
point of space is l/4w times the number of lines of force which

originate, per unit of volume, at that point.
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The following proposition is also of great importance. It is

possible so to distribute matter over a given surface, ivhich encloses

a given mass, as to produce, outside that surface, the samepotential
as that which the given mass produces. The mathematical proof of

this proposition cannot be introduced here, but an experimental proof

will be given in the chapter on electrostatics.

101. The calculation of the distribution of potential which is

produced by a given distribution of matter is extremely difficult or

even impossible in most cases ; but the beautiful method of electric

images, due to Sir W. Thomson, enables us to deduce with great

ease the solution of many unknown problems from the known
solution of others. The further discussion of this subject may be

left until we treat of the subject of electricity.



CHAPTEB IX.

PROPERTIES OF GA-SES.

102. Compressibility. Throughout this investigation we assume

that the temperature of the gas remains constant. The effects which

result from changes of temperature will be more conveniently treated

in the chapter on the effects of heat.

All gases are compressible ; that is, their volume can be diminished

by the application of pressure. We shall see afterwards that sound

could not pass at a finite rate through a gas which was not compres-

sible. So that the mere fact that gases can convey sound constitutes

a proof of their compressibility.

103. Boyle's Law. The law which very completely, though not

with absolute accuracy, represents the relation between the pressure

and the volume of air (and many other gases) was discovered

experimentally by Boyle, who showed that the density of a gas is

directly proportional to the pressure. In symbols, p being the

density and p the pressure, this is

p
= cpt

c being a constant. The density, that is the mass or quantity of

matter in unit volume, is numerically equal to the reciprocal of the

volume containing unit mass. Hence, v being this volume, we

may write, instead of the above,

pv = c,

where the constant c is the reciprocal of the former one; or, in

words, the volume is inversely proportional to the pressure.

Boyle's apparatus consisted of a glass U-tube (Fig. 60) with a long

and a short limb. The long limb was open to the atmosphere, while

the short one was closed, and contained a quantity of air, which was

separated, by means of mercury filling the bend of the tube, from

the outside air. The level of the mercury was the same in both

limbs of the tube, and so the enclosed air (the volume of which was

carefully noted) was at atmospheric pressure (75). Mercury was

then poured into the open limb, until a difference of level equal to
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a.

the height of the mercury barometer was established. The air

inside was therefore under a pressure of two atmospheres, and its

volume was found to have been halved ;
and so on with other values

of the pressure.

A slight modification of the. apparatus enables us to prove the law

under diminished pressure. AB (Fig. 61)

is a vessel containing mercury. The glass

tube a&, which is closed at the end a, but

is open at 6, is filled with mercury, and

inverted in AB. Being shorter than the

height of the mercury barometer, the tube

ab remains filled. Air or any other gas

may now be introduced into it until the

mercury inside is at the same level as that

outside. Under these conditions the gas

in ab is under atmospheric pressure. If

ab be raised, the mercury in it stands at

a higher level than that outside, and the

gas expands, since it is under diminished *^jj g
pressure. The ideal gas which rigidly

obeys Boyle's Law is called a perfect gas.
FIG. 60. FIG. 61.

104. Compressibility of a Perfect Gas. One gas is more compres-
sible than another in direct proportion to the alteration of volume

produced by a given pressure, and in inverse proportion to the

pressure required to change the volume to a given extent. Hence
we measure the compressibility by the ratio of the percentage

change of volume to the change of pressure which produces it.

That is to say, if the volume V changes by the quantity v when the

pressure alters by the amount p, the compressibility is measured by
the ratio vfVp.

By Boyle's Law we have

and

Therefore pV - ~Pv = 0,

since we can neglect pi), which is the product of two small quantities.

This gives v 1

that is, the compressibility of a perfect gas is inversely proportional
to the pressure.

105. Deviations from Boyle's Laiv. Though no gas is perfect,

yet many gases do not greatly deviate from Boyle's Law throughout
a considerable range of pressure.

Air is more compressed than it should be in accordance with the
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law until a pressure of nearly one ton's weight on the square inch

is reached. After this point, the compression is less than the

calculated value. A reason for this is simply that the volume of the

gas is not capable of indefinite decrease, while Boyle's Law asserts

that under infinite pressure the volume will become zero.

Hydrogen, unlike air, is, at ordinary temperatures, always less

compressible than the law indicates. Nitrogen, along with many
other gases, resembles air.

These results are exhibited graphically in Fig. 62. The actual

[FiG. 62.

volume of the gas is measured along the vertical axis, while the

volume of a perfect gas under the same pressure is measured along

the horizontal axis. The straight line passing upwards through
the origin at an angle of 45 is obviously the graph for a perfect
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gas. "The curved line intersecting the perfect gas-line, and, like it,

sloping upwards towards the right, represents the action of air
;

and the other curve, sloping similar!}-, is the graph for hydrogen.
106. Compression of Vapours. A vapour, though it may obey

Boyle's Law throughout a considerable range of pressure, ulti-

mately deviates more and more from that law as the pressure rises.

The direction of the deviation is similar to that of air at pressures
less than 152 atmospheres, i.e., the vapour is more compressed
than a perfect gas would be. When the pressure has become

sufficiently great, the vapour begins to liquefy ; and the pressure
then remains constant until the whole has become liquid. Further

compression is comparatively a matter of extreme difficulty.

The whole process above described must take place with extreme

slowness in order that the condition
( 102) of constant temperature

may be adhered to.

We may now suppose the temperature to be increased to, and
maintained at, a definite value higher than that which it formerly had.

If the pressure has the same value as it had at the commencement
of the former process, the volume of the vapour will be greater
than before, for all vapours expand when heated under constant

pressure. And, if the pressure be increased as in the previous case,

a precisely similar series of phenomena will be presented; the

volume of the substance, however, being always larger than formerly
under the same conditions as regards pressure. But one important
difference will be noted the change of volume during the process
of liquefaction will be less than it was when the temperature was
lower. Ultimately, when the temperature is sufficiently high,
there is no sudden change of volume when the substance assumes

the liquid condition. At still higher temperatures, the deviations

from Boyle's Law become less and less marked.

At all temperatures above the limiting one at which sudden lique-

faction ceases, the substance is called a gas ; at lower temperatures
it is termed a vapour.
With this explanation, no difficulty will be experienced in under-

standing the diagram on the opposite page. The volume, v, of a per-

fect gas is measured along the horizontal axis from a point not shown
in the diagram. The scale is such that 1,000 times the reciprocal of

the abscissa represents the pressure in atmospheres. The actual

volume, v', of carbonic acid gas is measured along the vertical axis.

In this way a series of curves are shown which indicate the devia-

tion of that gas from Boyle's Law at various temperatures. Portions

of two of the nearly straight lines, which these curves would become
if the gas were air, are drawn. The vertical portions of two of the

9
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curves indicate the stage during which liquefaction occurs the

almost horizontal parts belong to the liquid carbonic acid.

The substance is more or less compressible under given conditions

of pressure and temperature than a perfect gas is, according as a

line touching the curve (at the point satisfying these conditions)

makes a greater or less angle with the horizontal axis than the

angle whose tangent is v'jv times the tangent of the angle made by
the corresponding perfect-gas line. Hence the substance, when in a

condition resembling the liquid state, is less compressible than a

perfect gas would be ; and we thus see that hydrogen is less com-

pressible than a perfect gas, because, under ordinary conditions of

temperature and pressure, it is in a state more analogous to that of

liquids than to that of gases. Were it examined under conditions

similar to those of carbonic acid in the upper right-hand region of

the diagram opposite, i.e., under sufficiently diminished temperature
and pressure, it would almost certainly be found to have a smaller

volume than Boyle's Law shows.

107. Elasticity. All gases and vapours possess perfect elasticity

of bulk. That is to say, they entirely recover their original bulk

when allowed to do so by means of the removal of the distorting

pressure. This may readily be proved by the simple experiment of

inverting in water a glass vessel containing air or any gas which is

not appreciably dissolved by the liquid. The gas may be subjected

to, or relieved from, pressure by raising or lowering the glass vessel.

The possibility of discharging a bullet from a gun, or of propelling

a vessel or driving machinery by means of compressed gases

furnishes another proof of their elasticity. And still another proof

consists in the fact that they all convey sound, which would be

impossible were they not elastic, just as it would be impossible if

they were not capable of being compressed.
108. Viscosity. We have already given a general definition of

this term as the property in virtue of which there is resistance to

shearing motion. But it is convenient to use the word as referring

to a specific property (one independent of the size of the body,

81). Hence we define viscosity as the tangential force per unit

area of two indefinitely large parallel plane surfaces of the fluid

which are at unit distance apart and move parallel to each other with

unit relative speed. It follows that the tangential force per unit

area of two such planes at a distance x apart, and moving with

relative speed v, is rv/x, where T is the viscosity. But, in shearing

motion v is always proportional to x, so that the tangential force

is rdvldx.
In making an actual determination of the value of r in any gas,



PROPERTIES OF GASES. 131

various forms of experiment based upon the above definition might
be used. Clerk - Maxwell used a circular disc which vibrated

torsionally about a perpendicular axis through its centre. Two
similar fixed discs were placed one on each side of the vibrating

disc, and the gas occupied the intervening space. The disc would

obviously oscillate more slowly in a viscous gas than in one which

possessed small viscosity ;
and the quantity r may be determined

from the results of such experiments. The mathematical investiga-

tion is somewhat more difficult than we can venture to introduce

into an elementary work.

This property varies very much from one gas to another. In

hydrogen, carbonic acid, air, and oxygen, it increases from the first-

mentioned to the last-mentioned, being about half as great in

hydrogen as in air.

It increases very markedly also with rise of temperature.
The slow descent of clouds, or of fine suspended dust, in air is due

to the viscosity of that gas. The weight of a drop of water, which

causes its descent, is proportional to the cube of its diameter ; but

the resistance which results from viscosity is proportional only to

the first power of the diameter. Hence, if the diameter of a drop
be reduced to one -tenth of its original value, the weight becomes
one-thousandth of what it was before, while the resistance is merely
reduced to one-tenth of its previous amount. That is to say, the re-

sistance is relatively one hundred times more effective than formerly.
109. Diffusion. When two gases, which are not intimately

mixed, occupy a certain volume, each gradually diffuses itself through-
out the whole volume, so as to fill it just as it would have done had

the other been absent. The only effect of the presence of the other

gas (on the presumption that there is nothing of the nature of

chemical action between them) is that the time taken by the first to

uniformly fill the space is greatly increased. The above process is

called diffusion, and the corresponding property is diffusivity.

Experiment shows that the quantity of gas which passes in time

t through -an area &, perpendicular to which the rate of variation of

density per unit of length is r, is proportional conjointly to t, a, and r.

Hence, if q be this quantity, we have

q = Srta,

where 8 is a constant (the diffusivity, or co-efficient of inter-diffu-

sion) the magnitude of which depends upon the nature of the gases.
If r, t, and a are each unity, we get

q = t,

and so we define the diffusivity as the quantity of tlic substance

92
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which passes per unit of time through unit area across which the

rate of variation of density of the substance per unit length is

unity. The quantity r is generally called the ' concentration-

gradient,' and may be written in the form dpjdx, where p is the

density and x is measured along the line drawn in the direction in

which the diffusion is taking place.

We shall find afterwards that the kinetic theory of gases leads to

the conclusion that the co-efficient of interdiffusion of gases should

be approximately in inverse proportion to the geometrical mean of

the densities of the two gases under one atmosphere of pressure.

The figures in the first column of the accompanying table give relative

values of $ for pairs of gases, the relative values of the reciprocals of

the geometrical means of which are given in the second column :

Carbonic Acid and Air ... ... 1 ... 1.

Carbonic Acid and Carbonic Oxide ... 1 ... 1.

Carbonic Acid and Hydrogen ... 3'9 ... 3'8.

Carbonic Oxide and Hydrogen ... 4*6 ... 4*8.

Oxygen and Hydrogen ... ... 5*2 ... 4*5.

The greatest deviation occurs with oxygen and hydrogen. This is

probably due to molecular action between these gases.

110. Effusion. The phenomena presented in the passage of gases

through the pores of solids are of great interest, and have been

elaborately investigated by Graham. The simplest results are obtained

when the solid is practically of .infinite thinness and is non-porous,

but has a small hole drilled through it. If a gas is kept under

constant pressure at one side of the solid, while a vacuum is

preserved at the other side, the process of passage of the gas is

called effusion. The theoretical treatment of the question is

extremely simple. The work done in the transference of unit

volume of the gas is
( 62) numerically equal to p, the pressure ;

for the total pressure on unit area then acts through unit distance.

And the kinetic energy acquired is ^-pv
2

,
where p is the density or

mass per unit volume, and v is the speed of the escaping gas.

Hence the speed of escape, and therefore the quantity of the

substance which passes through in one unit of time, is inversely as

the square root of the density. The observed and calculated

quantities for four substances are given in the subjoined table :

Observed. Calculated.

Carbonic Acid 0'835 ... 0-809.

Oxygen 0'952 ... 0-951.

Air 1 ... 1.

Hydrogen 3'623 ... 3'802.
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It appears that hydrogen and carbonic acid pass through more

rapidly and more slowly respectively than the above law would
indicate. The reason for this will be seen in next section.

111. Transpiration. When the non-porous septum, above referred

to, is not thin, the small aperture becomes a tube of exceedingly
fine bore, and the gas passes through by transpiration. Graham
found that the rate of passage was altogether independent of the

nature of the substance forming the walls of the tube. This

suggests that a layer of the gas becomes deposited upon the interior of

the tube, so that the gas has really to flow through a tube composed
of its own substance in a highly condensed state. [It is well known
indeed that most, and probably all, solids have a great power of

condensing gases on their surfaces or within their pores.] Hence
we would expect that transpiration is a process which depends upon
the viscosity of the gas. This is borne out by the fact that the rates

of transpiration of oxygen, air, carbonic acid, and hydrogen are,

in increasing magnitude, in the order in which these gases are

here named, being fully twice as great in hydrogen as in air an

order which is the exact reverse of their order as regards viscosity.

Hence we conclude that the abnormality in the rates of effusion of

hydrogen and carbonic acid was due to viscosity, the hole in the thin

plate acting to some extent as a short tube.

112. When the pores of a substance through which a gas passes
are extremely fine (as in fine unglazed earthenware), the rate of

passage follows the ordinary law of diffusion or effusion, i.e., gases

pass through at rates which are inversely as the square roots of their

densities. Hence we have a means known as the method of

Atmolysis by which to separate a mixture of two gases of different

densities. If the mixture be placed inside a porous earthenware

vessel, the less dense gas passes through most quickly, so that, when
the process has gone on for some time, we have two portions of gas,

one containing in most part the less dense gas, the other composed

mostly of the denser one. The process may be re-applied so as to

separate the two constituents to any desired extent.

It has been already mentioned ( 79) that carbonic oxide passes

rapidly through red-hot iron
;
and hydrogen passes through palla-

dium, and even platinum, at ordinary temperatures.
In some cases the gas combines chemically with the substance on

one side, diffuses through it, and is given off on the other side.

This occurs with india-rubber.



CHAPTEK X.

PROPERTIES OF LIQUIDS.

113. Compressibility . Liquids, like gases, convey sound, and are

therefore compressible and elastic. But they differ from gases, in that

their compressibility is usually extremely small. They differ, also,

as widely in respect of the law of compression. An inspection of the

diagram of 278 will show that a vapour such as carbonic acid

becomes more and more compressible as it approaches the liquefy-

ing stage, while, during liquefaction, the compressibility is infinite.

The change is in the opposite direction when the whole substance

has become liquid ; the compressibility is extremely small, and

diminishes as the pressure increases. For example, the right-hand

portion of the isothermal of 21'5 is practically a straight line, and

therefore the quantity dvldp is constant. But the compressibility

is dvjvdp ; and v diminishes as the liquefying stage is approached,

so that the compressibility increases. Similar reasoning proves the

above statement regarding the liquid condition.

The earlier determinations of the compressibility of liquids were

made by means of an apparatus called the piezometer, and the

more perfect modern appliances all work on the same principle.

This apparatus consists of a large glass bulb, having a narrow care-

fully-graduated stem, which is open at the top. The internal

volumes of the bulb and of the stem are accurately measured. The

liquid, whose compressibility is to be determined, fills the bulb and

part of the stem. A small column of mercury suffices to separate

the liquid inside the bulb from water which fills a strong glass

vessel, inside of which the bulb is placed. The outer vessel is

closed, and pressure is applied by screwing in a plug so as to

diminish the internal volume.

The pressure is communicated to the liquid inside the bulb, since

there is a complete liquid connection through the stem ; and its

amount may be measured by means of the compression of air con-
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tained in a glass tube, which is closed at the upper end, and is

also placed inside the outer vessel.

If the glass were incompressible, the compression of the liquid

would be at once found by means of the extent to which the

mercury index descended in the stem. If the liquid were incom-

pressible, while the glass was capable of compression, the index

would rise. If the liquid and the glass were equally compressible,

the position of the mercury would not alter. Hence we see that

this experiment really gives the difference between the compressions
of the glass and the liquid, so that we must first know by experi-

ment the compressibility of the glass of which the bulb is formed.

This, as we shall see in the next chapter, is a comparatively simple
matter.

Water is compressed by about one twenty-thousandth part of its

bulk per atmosphere of pressure added. Unlike all other liquids

hitherto observed, its compressibility diminishes when its tempera-
ture is raised, a minimum being reached about 63 C.

The compressibility of all liquids is lessened by increase of

pressure.

114. Elasticity. All liquids, like gases, possess perfect elasticity

of bulk, and, in common also with gases, have no elasticity of

form.

115. Viscosity and Viscidity. Viscosity is very much more
marked in liquids than in gases, and varies greatly from one liquid

to another. The slowness of the descent of fine mud in water is

due to the viscosity of that liquid, and the slowness of the fall of

fine rain-drops is caused by the viscosity of air. Glycerine is one

example of an extremely viscous liquid, while sulphuric ether has

little viscosity in comparison with it.

One extremely simple method of determining the viscosity of

a liquid consists in forcing it under pressure through a cylindrical
tube of very fine bore. The quantity which passes through per
unit time is directly proportional to the difference of pressure per
unit length of the tube and to the fourth power of the radius, and
is inversely as the co-efficient of viscosity.

Viscosity diminishes rapidly with increase of temperature.

Viscidity is a related property in virtue of which a liquid can be

drawn out into long threads. Other things being equal, a liquid is

viscid in proportion to its viscosity ; but the molecular forces pro-

duce another effect besides viscosity, which acts so as to prevent

viscidity ( 125).

116. Diffusion. Under the diffusion of liquids we include the

diffusion of solutions of solids.
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Diffusion of liquids is a very much slower process than diffusion

of gases. If a solution of bichromate of potassium be carefully

introduced at the foot of a vessel containing water, the process of

interdiifusion may go on for months before appreciable uniformity
is attained.

Many methods (electrical, optical, etc.) exist, by means of which

the co-efficient of interdiffusion (the definition of which is identical

with that given in 110) may be determined.

In one method, due to Graham, communication is established

between two vessels, each of which contains a liquid capable of

diffusing into that contained by the other. Special care is taken to

avoid the production of currents whether in the act of establishing

communication or because of difference of density of the liquids.

The communication is closed after a definite time, and the extent to

which diffusion has gone on is determined. A series of precisely

similar experiments is made, each experiment of the series lasting

for a different interval of time, and the diffusivity is determined from

the results.

117. Osmose. Dialysis. Diffusion of liquids can take place

through animal membrane, such as a piece of bladder. The less

dense liquid passes through most quickly. If a vessel containing a

strong solution of sugar be closed tightly by means of a membranous

substance, and then be immersed in a vessel of water, the contents

of the inner vessel will rapidly increase, and may finally cause the

membrane to break. The process of such transference is called

osmose.

Liquids may be broadly divided into two classes with reference to

the readiness with which they pass through animal membranes.

Crystalloid substances, such as common salt, sugar, etc., pass easily

through when in solution
;
but solutions of colloid substances, such

as glue, can scarcely pass at all. This is the basis of the process of

dialysis, which is used for the separation of a mixture of colloid and

crystalloid bodies. The mixture is separated from pure water by a

portion of animal membrane, through which the substances pass in

very disproportionate quantities. One or two repetitions of the

process are sufficient to practically separate the two constituents of

the mixture.

The method is essentially analogous to the method of atmolysis,

which was described in 112.

118. Cohesion. Cohesion is that property which, apart from the

mere gravitation of the parts as a whole, results in the clinging

together of portions of matter whether of the same or of unlike

kinds. It may be regarded as a result of the so-called molecular
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forces. (See, again, 83.) When a body has been pounded down,

so that its parts have been separated beyond the range of the mole-

cular forces, cohesion may be brought about again by the application

of pressure sufficient to place the molecules once more within the

range of their mutual forces. In the case of a liquid, it is sufficient

to merely place the separated parts in contact. (For further treat-

ment, see under Properties of Solids.)

119. Capillarity. It is a well-known law of hydrostatics that the

pressure ( 75) has the same value at all points of a fluid which are

at the same level, so that we should expect that the level must be

the same at all surfaces of a continuous fluid mass which are

exposed to the atmosphere. Yet, in some cases, this is far from

being the fact.

If a fine capillary tube be inserted in some liquids, the leve

is higher inside the tube than it is outside ; while in other liquids

FIG. 63.

the reverse is the case (Fig. 63). Thus water rises inside a glass

tube, while mercury descends.

These phenomena (called capillary phenomena) seem to be in

direct violation of the above-mentioned law of hydrostatics, but in

reality they are in strict accordance with it.

120. In proof of this we observe, first, that the surface of a liquid

which rises in a capillary is always concave upwards, while the

surface of one which descends is invariably convex upwards.

Next, we observe that, if a surface, originally plane, is under

tension and is curved, there must be more pressure on the concave

than on the convex side. Otherwise, the surface would once more
become plane, because of its tendency to shrink. Hence, if we can

show that there is tension in the surface films of liquids, it follows

that there is more pressure on the concave side than on the convex

side of the curved surface of a liquid.
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But it is well known that the surfaces of liquids tend to become as

small as possible. Many examples of this fact may be brought for-

ward. A soap-bubble contracts of itself if the air inside it be

in communication with that outside
;
and the mere fact that the

soap-bubble is naturally spherical constitutes another proof, for the

sphere is the minimum surface which can enclose a given volume.

For the same reason rain-drops are spherical which is proved by
the perfect circularity and definiteness of the rainbow'. Again, if

some alcohol be dropped on a thin layer of ink, the surface of the

ink will decrease, while that of the alcohol is increased, because of

the excess of the surface-tension of ink over that of alcohol.

Let us suppose, now, that the surface of a liquid in a narrow tube

becomes hollow upwards. Just underneath the outside plane surface

there is atmospheric pressure, while just below the curved surface the

pressure is less. At some point, p (Fig. 64), lower down in the tube

FIG. 64. FIG. 65.

the pressure (which is there increased because of the weight of the

liquid) is equal to that of the atmosphere. Hence, in strict accord-

ance with hydrostatic laws, the liquid must rise until the point

p is at the level of the surface of the liquid outside.

Similar considerations explain the depression, in a narrow tube,

of a surface which is convex upwards.
It only remains to explain why the surface becomes curved. We

shall assume that the tube is of glass, that the liquid is water, and

that the surrounding atmosphere is air. The surface of the liquid

in contact with the glass is under tension, the amount of which

per unit breadth of the film we may denote by KTg . There is also

a film of condensed gas on the surface of the glass, the tension of

which per- unit breadth we may similarly represent by Tr The

particles of the liquid at the edge will therefore be pulled upwards or
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downwards according us eT^ is greater than, or less than, .T,. In

the case assumed, T^ is greater than
..T^, and so the water surface

becomes concave upwards. The tension TW of the water surface

which is in contact with the air which formerly acted straight
outwards from the walls of the tube now acts downwards at an

angle a with the side of the tube (Fig. 65). So we have now a total

downward tension JSg + JTW cos a per unit breadth, and equilibrium
will ensue when

.Tj + .T. cos a=Jfg .

121. In the case of water this equation is not satisfied even when
a vanishes, for .T, is greater than the sum of ,1, and .T, ;

and so

the surface of water in a narrow tube is hemispherical. It is very
essential to keep the surface of the liquid free from impurity, and
to ensure that the surface of the solid is chemically clean. The

slightest trace of grease might entirely prevent the liquid from

rising.

The angle , which is called the angle of contact, may be found

experimentally by the following method. Let AB (Fig. 66) be a

plane plate of the glass (or other solid), and let it be dipped into the

FIG. 66.

liquid CD. If the liquid rises and wets the solid, making an acute

angle a with it, it is evident that when AB is inclined at the angle a

to CD, the level of the liquid is unaltered at that side of the plate

which faces upwards. We may now find a by direct measurement.

The figure, if turned upside down, corresponds to the case of a

liquid which descends in a capillary tube.

122. We can now determine the height to which a liquid will

rise in a tube of given bore. Let r be the radius of the tube, and

let T be the tension per unit breadth of the surface separating the

liquid from the air, while a is the angle of contact. T cos a is the
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upward pull per unit breadth, and hence 2;rr T cos a is the total

upward pull. This is balanced by the weight of the raised liquid.

Therefore, h being the mean height to which the liquid rises over the

outside level, while p is the density of the liquid, and g is the value

of gravity, we have

2?rr T cos a = 7rr
2
hpg.

This gives

h= 2T cos a

pgr

Hence the height is inversely proportional to the radius of the tube.

When the liquid rises between two parallel plates of breadth b.

placed at a distance d apart, the above equation becomes

26T cos a = bdhpg.
So in this case

h= 2T cos a
-

pgd

that is, while the law is the same as formerly, the height will only

be the same when the distance between the plates is equal to the

radius of the circular tube.

We can determine the value of T by either of the above methods,

provided we know that of .

The height to which the liquid rises is inversely proportional to

d. And since, if the plates be not parallel, but be placed in contact

along one of their vertical edges, d will be proportional to the

distance from the common edge, the liquid, rising highest where d

is smallest, will meet each plate in a curve which is a rectangular

hyperbola. The axes of the hyperbolas will coincide respectively

with the common edge, and with the lines in which the level

surface of the liquid meets the plates.

123. The results of 120 enable us to explain the strong
' attrac-

tion
'

of two parallel glass plates between which a drop of water is

placed. For, since the water becomes concave outwards, the

pressure inside it is less than that of the atmosphere, and hence

the plates are pressed, not attracted, together. The lifting of a

stone by means of a leather ' sucker '

is similarly explained.

The plates would be apparently repelled apart if the liquid did

not wet them, i.e., if it became convex outwards. And it is easy

to prove that this would result also if only one plate were wet. The

liquid would rise to a greater height outside the one plate, and

would descend farther outside the other, than it would rise or fall

in the interior space. At the par^t ab (Fig. 67) there is less than
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atmospheric pressure outside (for the liquid is concave upwards),

while, inside, there is atmospheric pressure, Also, at cd, there is

more pressure on the inner, than on the outer, side. Thus, from

both causes, the plates are pressed apart.

124. In the proof of 73 we may suppose that, instead of a cord

stretched in a circular tube, we have a film of unit breadth stretched

over a cylinder. The pressure per unit area will therefore be T/K.
If the film be stretched over a spherical surface of the same

radius K, the pressure would have the value 2 T/E, for there are

now equal curvatures in two directions at right angles to each

other. [The investigation of 122 furnishes a special proof of

this. For if cos a 1, the surface of the liquid is hemispherical in

the circular tube, and is cylindrical in the space between the

parallel plates. But the formulae show that, if the radii of the

d

FIG. 67.
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of the liquid in B may be altered at pleasure. The liquid will pass

through the capillary tube, and will gather into a drop at the lower

end of it ; but this drop will not fall away unless the difference of

level, 7t, between its lowest point and the free surface of the liquid
in B is too great. The inward pressure per unit surface of the drop
is p + 2T/r, when p is the atmospheric pressure and r is the radius

of the drop (measured by micrometric methods). The outward

pressure per unit surface, due to the weight of the liquid and the

pressure of the atmosphere, is j + Us, where s is the specific gravity
of the liquid. Hence 2T = rhs.

125. We have hitherto regarded surface-tension as an observed

fact merely, but it is easy to see that it is a necessary result of the

mutual potential energy of molecules, or, as we may put it, of the

molecular forces. Let p' (Fig. 69) be a molecule in the liquid,

situated at a greater distance from its surface than the range through
which the molecular forces are sensible. Draw a'sphere from^/ as

FIG. 69.

centre with the range of the molecular forces as radius. There is

no mutual action between _p'and any molecule outside this sphere ;

and it is equally attracted on all sides by the molecules inside the

sphere. But any particle p, which is nearer the surface of the

liquid than the given distance, is pulled inwards on the whole by
the molecular attraction of the interior particles. And this inward

pull on the surface particles produces the same effect as, and will

obviously be manifested as, a surface-tension, tending to diminish

the external periphery of the liquid.

126. The tension of a sheet of india-rubber increases in propor-

tion to the augmentation of the surface, but the tension of a liquid

film remains absolutely constant (at least through extremely wide

limits) when the area of the surface is altered. If left to itself, the

india-rubber will contract until the area of its surface once more

attains its original value ; but the liquid will contract until its

surface becomes as small as possible.

Consider a film of breadth 6, the tension of which per unit
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breadth is T, so that the total tension is T6 in the direction of the

length of the film, If the length of the film be increased by the

amount I, the work done in the process is T6Z
( 62). But this is

equal to TS, where S is the increase of surface. Thus the work is

directly proportional to the increase of area, and we may look upon
T as the amount of work done per unit increase of area instead of a

tension per unit breadth,

Taking this fact in conjunction with the result of last section, we

can now obtain an expression for the exhaustion of potential energy

of molecular separation (the work done by the molecular forces)

when two separate masses of the same liquid are placed in contact

over a given area. Let S be the area, so that 2S is the diminution

of surface of the two masses. The work done is 2TS.

Let T and T' be the surface-tensions of two different liquids, and

let t be the tension of the surface separating the two when placed in

contact. The work done by the molecular forces when they come

into contact is obviously (T + T' - t} S. The above result is a

particular case of this, for, when the two liquids are identical, we
have t = o and T = T'.

If in any case the work done is greater than (T -f-T')S, i,e. t
if t

be negative, the surface of separation of the two liquids must

increase. This it may do by becoming puckered ; and, the smaller

the scale of the puckering, the greater will be the increase of

surface. Thomson regards this invisible replication of the

separating surface as the commencement of the process of

diffusion.

127. The surface-tension of a liquid diminishes rapidly with rise

of temperature, and it vanishes entirely at the critical temperature

( 24, 278).

The saturation pressure ( 275) of the vapour of a liquid depends

upon the temperature. But, the temperature being fixed, it also

varies with the curvature of the surface of the liquid, being greater

the more convex outwards the surface is. Hence small drops of

water in a cloud evaporate, the vapour being deposited upon the

larger ones.

From the fact that the surface-tension of liquids decreases with

rise of temperature, we might deduce, by the principle of stable

equilibrium ( 15), the result that sudden extension of a film will

produce a fall in its temperature. For, since the system is in stable

equilibrium, it follows that extension of the film will produce ar\

effect which results in an increase of the force resisting the exten-

sion. It will, therefore, cause diminution of temperature, This is

known to be the case,
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The principle of dynamical similarity shows at once that the

square of the fundamental period of vibration of a (weightless)

liquid sphere is directly proportional to the density of the liquid and

to the cube of the radius of the sphere, and is inversely proportional

to the surface-tension. It also shows that the period of funda-

mental vibration of a (weightless) soap-bubble is independent of its

linear dimensions.



CHAPTER XI.

PROPERTIES OF SOLIDS.

128. Compressibility and Rigidity. The compressibility of a solid

is defined in precisely the same way as that in which we have

already denned the compressibility of a liquid or gas. It is the

ratio of the percentage change of volume to the change of pressure

which produces it. The reciprocal of this quantity is called the

resistance to compression, and is usually denoted by the letter Jc.

The compressibility is most readily determined by measurement
of the alteration of length of a rod of the substance to which known

hydrostatic pressure is applied. If p' be the percentage alteration

of length, the percentage alteration of bulk is approximately p =

3p'. For Z, 6, and t, representing respectively the length, breadth,

and thickness of a rod of the given substance, the new volume is

lbt(l-p')
3

, which approximately is lbt(l-8p') = lbt(l-p). In all

actual cases the value of p' is so small that any power higher than

the first may be neglected. [It must be observed that we assume
the substance to be isotropic, i.e., its properties are independent of

direction. If this were not so, p' might have different values in

different directions. This assumption will be adhered to throughout
the chapter.]
The rigidity of a solid is the measure of its resistance to change

of shape. Let ABCD (Fig. 70) be a cube of a given solid, the edges of

FIG. 70.

which are of unit length. Let equal tangential forces, of magnitude
T per unit area, be applied to the opposite faces AB and CD, and

10
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let them act in the directions indicated by the arrows. These

forces will produce shearing of the cube, but they will also produce
rotation in a direction opposite to that of the hands of a watch. To

prevent this rotation, tangential forces equal to the former may be

applied to the opposite faces AD and CB. The result of the

application of this set of forces is that the square section shown in

the figure becomes rhomboidal, the angles at D and B being made

less than a right angle by the same amount that the angles at A and

C are made larger than a right angle. If 9 be the change of angle,

the rigidity, which is usually denoted by the letter n, is given by the

formula
n = T/0.

129. Let us denote the three pairs of parallel faces of a unit cube

by the letters A, B, and C. Similarly we shall speak of the edges

joining the A faces as the A edges, and so on.

Let unit normal pressure per unit area be uniformly applied to

the A faces. This will diminish the A edges by an amount Z, and

will increase the B and C edges by a common amount I'. Now let

unit normal tension per unit area be applied to the B faces. This

will increase the B edges by the amount Z, and diminish the C and

A edges by the amount I', small quantities of the second order of

magnitude being neglected. The result is that the A edges and the

B edges are respectively diminished and increased by the amount

Z+Z', while the C edges are unaltered in length. Hence there is no

alteration of volume.

Now this result might have been produced by the method of last

section. If any point in the face DC (Fig. 71) of the unit cube be slid

forward relatively to a point in AB through the (very small) distance

s, the increase of length of the diagonal DB is s cos 45 =
s/>v/2.

A B

FIG. 71.

Similarly the decrease of length of AC is / ^2. The given

tangential forces are obviously equivalent to a pressure parallel to

AC of magnitude 2Tcos45 = T A/2 per area ^2, i.e., T per unit

area, and to a tension parallel to DB of the same magnitude. If,
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now, we let T = 1, sj */2 is the alteration of length of the diagonal
which contains \/2 units, and so s/2 is the percentage change of

length in the direction of the diagonals due to unit tension parallel

to BD and unit pressure parallel to AC. Hence, equating the results

of the two methods, we get s = 2(Z+ 1'}. But s = 9, the change of

angle of the unit cube. Hence

130. Unit pressure per unit area on the A faces shortens the A
edges by the amount Z, and increases the B and C edges by the

common amount I'. The quantities I and I' being extremely small,
if unit pressure be now applied to the B and C faces, all the edges
of the cube will be diminished by the amount I - 11'=p r

. Hence

(2).

The quantity 1/Z (the reciprocal of the percentage change of length
of a rod under unit tension or pressure per unit of its transverse

sectional area) is called Young's Modulus. From (1) and (2) we
find

91m

This formula enables us to determine the value of either I, k, or n,

provided that we know the values of the other two. The following
table gives the value of I for a few substances, the unit of pressure

per square inch being the weight of one pound :

Steel ......... 30(10) -.
Iron ......... 39(10)-9.

Copper (hard) ...... 56(10)
~ 9

.

(annealed) ... 64(10)-
tJ

.

Glass (average) ... 141(10)-*.

131. The rigidity n is not found in practice directly by the process
which was described in 128. It may be found by determining
the moment of the couple which is required to twist a cylindrical

rod of the substance through a given angle.
Consider a circular ring of this rod, of radius r, of infmitesimally

small breadth dr, and of thickness dh= dr. If the ring be divided

into little parts by a series of planes passing through the axis OP of

the rod, and making angles equal to dr/r with each other, each

little part will be cubical in shape, and the number of cubes will be

If, by the given twist of the rod, the upper side of any one

102
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of these little cubes is twisted forward relatively to the under one by
the small angle d9, the consequent change of angle of the little cube

is rdO/dh. And, as the same change of angle would be produced in

FIG. 72.

a unit cube by a tangential stress of the same magnitude per unit

area as that which acts upon the elementary cube, we have

( 128)

rd0_T
dh ~n

Hence the total tangential stress acting on the circular ring, which

is the product of T into the area of the flat surface of the ring, has

the value

-yrdh

The moment of the force on the ring is therefore

where 9 is the twist per unit length of the rod, so that dQ= Odh.

Taking the integral of this from the axis outwards, we find for the

total moment of the force required to twist the rod through an angle

9 per unit of length the quantity

r being the radius of the rod.

The quantity 7rar4/2Z, where I is the length of the rod, is called

the ' torsional rigidity
'

of the rod. It is not, of course, a specific

property.

[It is easy to deduce the result (1) by elementary considerations.

Let us imagine the rod to be divided into similar little cubes as

above. The total tangential force (in a plane perpendicular to the

^ - _;
IT ft.
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axis of the rod) on one face of any such cube, at a distance r from

the axis, is proportional to r-
;
and therefore the moment of the

force is proportional to r3 . But the amount by which, with a given

twist, the upper face of the cube slides forward relatively to the

lower face is proportional to r. Hence the total couple, c, required

to produce the twist is proportional to r4 . But it is also proportional

to 9 so long as Hooke's Law holds ; and we may therefore write

where n is the rigidity, provided that we make a suitable definition

of the various units involved.]

Even a simpler experimental method consists in attaching to one

end of the rod a body whose moment of inertia about the axis of

the rod is very great. Let the rod be firmly clamped in a vertical

position by its upper end, the body being attached to its lower end.

The time of oscillation of the whole system about this axis depends

upon the value of n.

The moment of the couple about the axis is 10, I being the

moment of inertia of the system ( 70). Hence, from (1),

(2).

This equation asserts that the angular acceleration is proportional to

the angular displacement, and therefore the integral is ( 51)

(3),

a and 9 being constants. If we increase t by the constant quantity

the value of 9 is unaltered. This means that the periodic time of

vibration of the system is

which furnishes a ready method of determining n. (It is here

assumed that the rod is of unit length. If it be not so, the equation
will still hold, provided that we divide the observed value of T by
the square root of the length.)

132. The following table gives, in the same units, the values of

n for the substances for which I was given in 130. From these

numbers the values of k are calculated by means of (3) 130, and
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the observed values of & are given in the last column. There is con-

siderable discrepancy between the calculated and the observed values,
but this need not produce surprise, for there are many causes of

variation in the experimental results. The value of r in the expres-
sion for the rigidity is usually small, so that a large percentage error

may occur in its measurement
; and, even if r were uniform through-

out the rod, which is rarely the case four times this error will be

produced in the calculated values of n, since r is involved to the

fourth power. Again, the substances may not be really isotropic ;

and the special physical treatment e.g., the drawing out of a wire

to which an originally isotropic substance is subjected will fre-

quently make it non-isotropic.

n
Steel ... 121(10)5 ...... 450(10)5 ... 284(10)5.

Iron (wrought) ... 112(10)
5 ...... 120(10)

5
... 213(10)

5
.

Copper 64(10)
5 to 71(10)5 ... 122(10)5 to 288(10)

5 ... 227(10)5.

Glass (average) ... 28'4(10)
5 ...... 47(10)5 ... 43(10)5.

Amagat's observed values of ~k for steel, copper, and glass are

respectively 220(10)
5

, 174(10)
5

,
and 66(10)

5
.

133. The flexural rigidity of a bar in a given plane is measured

by the moment of the couple which is required to produce unit cur-

vature in that plane. In similar and equal bars of different substances

it is directly proportional to Young's modulus ; and, in different bars of

the same substance and of similar though unequal section, it is pro-

portional to the square of the sectional area. However a bar be bent,

the locus of the centres of inertia of all the transverse slices is un-

altered in length. The length of all other lines is either increased

or diminished. This shows why Young's modulus is involved.

Consider a rectangular rod, of thickness d and of breadth 6. Let

it be bent uniformly to unit curvature, and let us suppose that b and

d are small in comparison with the radius of curvature. If we
further imagine the rod to be composed of a very large number of

rods, whose cross-sections, are similar to that of the given rod, and

whose lengths are equal to the length of the given rod, it is easy

to see from similarity that the couple which is required to produce
the curvature must be proportional to 6, the breadth of the rod

measured perpendicular to the plane of bending. Also the

elementary rods which are further away from the centre of curva-

ture than the central plane of the given rod are extended in pro-

portion to their distance from that plane, while those nearer to

the centre of curvature are shortened in the same proportion.

Hence we see that the total force must be proportional (so far as



PROPERTIES OF SOLIDS. 151

this effect goes) to cl and to w Young's Modulus ; and therefore the

moment of the couple must be proportional to in and to d2
. But

the number of little rods, of a given size, is proportional to d ; and

therefore, finally, the moment c must be proportional to &, to m,
and to d? say

where/ is a constant. Thus we .see that the flexural rigidity of a

rectangular bar is proportional to its breadth and to the cube of its

thickness in the plane of 'bending.

134. Elasticity. All solids possess elasticity, both of form and of

bulk, to a greater or less extent. Within limits (which vary greatly

in different substances) the elasticity is perfect, i.e., the original

form or volume is entirely regained ;
but if too great stress be applied,

the body will either break or become temporarily or permanently
distorted. Steel is a good example of the former class. Its limits

of elasticity are very wide apart, and it breaks before much perma-
nent distortion is apparent. On the other hand, lead can scarcely

recover entirely from any distortion however slight. When perma-
nent distortion occurs, the molecules have set themselves into new

permanent groupings. When the distortion is only temporary,

they can resume gradually their old positions.

An elastic solid, if it be kept distorted for a considerable time

and then be released so slowly that it does not vibrate, does not in

general at once recover its original form, but gradually creeps back

to it. If it be consecutively distorted, first in one sense and then

in the opposite, it will slowly recover from the second distortion for

a time, and then will undo the quasi-permanent part of the first.

The limits of elasticity depend to a large extent upon the physical

treatment to which the substance is subjected. The elasticity of a

wire is greatly diminished if the wire be kept oscillating for a long

period of time. That this is so is shown by the fact that its oscilla-

tions die away much more rapidly in this case when it is left to

itself after being set in oscillation. The elasticity is said to be
'

fatigued
'

by the process.

135. We may conveniently define elasticity as that property in

virtue of which stress is required to maintain strain ( 68). Within

the limits of elasticity, the necessary stress is proportional to the

strain. This is known as Hooke's Law, and is usually stated in

the form ' Distortion is proportional to the distorting force.'

The constancy of the quantities n and k in equations (1), 129,

and (2), 130, depends upon the truth of this law; for their con-

stancy implies that, if the unit of pressure be multiplied in any
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proportion, the quantities on the left-hand side of the equations
will also be increased in the same ratio.

The constancy of the pitch of a note which is given out by a

musical instrument proves that Hooke's Law is obeyed by the

vibrating substance within the given limits of distortion.

The rigidity and the resistance to compression will not remain
unaltered if the distortion be too great ; but, between new limits,

the law will again hold, n and & having new constant values.

136. Viscosity. Viscosity, or internal friction, is apparent in

solids as well as in fluids. The vibrations of a tuning-fork die away
at a geater rate than can be accounted for by the impartation of

energy to the air in the production of sound. Internal friction

transforms the original energy partly into the form of heat in the

material of the instrument. The phenomenon of fatigue of elasticity

is also due to this cause, the internal friction being increased by
the process which induces '

fatigue.'

137. Cohesion. Tenacity. Cohesion is in general much more

powerful in solids than in liquids.

The parts of any body are kept together both by the force of

cohesion and by mutual 'gravitation. In small bodies, such as

stones, the part played by gravitation is totally iiegligable in com-

parison with that due to cohesion. But, in large masses, such as

the earth, gravitation has much the larger effect.

The force of cohesion has generally been regarded as a molecular

attribute distinct from gravitation. But Sir W. Thomson has

pointed out that cohesion may be explained by means of the gravi-

tational law.

If a bar of lead be cut into two parts, such that the freshly-cut

surfaces accurately fit each other, the parts will readily reunite by
cohesion when the surfaces are brought sufficiently close to each

other. Such a phenomenon as this could not occur if matter were

continuous and of uniform density throughout. For the range of

the molecular forces ( 145) is so small that only an extremely small

amount of matter at one surface of the 'bar could sensibly attract,

according to the gravitation law, a given particle at the opposed
surface. But, in order to get comparatively a very large mass at

one surface within ' molecular range
'

of the given particle at the

other, we have only to suppose that, as regards density, matter

is intensely heterogeneous on an invisibly small scale ; and thus the

molecular gravitational force might be sufficiently great to account

for cohesion.

138. The property of tenacity, in virtue of which there is resist-

ance to the drawing asunder of the parts of a body, is obviously
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cohesion regarded from a different point of view. We may measure
the tenacity of a substance by the tension which is required to

rupture a rod or wire of that substance whose cross-sectional area

is unity. The following table gives its values, for sudden rupture,
in a few substances. Eupture will be slowly produced by some-

what smaller (frequently considerably smaller) tensions. These

numbers, however, can only be used for purposes of rough calcu-

lation, as the property varies with the physical treatment and
chemical purity of the substance. They represent the number of

kilogrammes whose weight will produce sudden rupture of a rod

which has a sectional area of one square millimetre.

Lead 2-4 ... 2.

Tin 2-9 ... 3-6.

Gold ... ... 28 ... '11.

Silver 30 ... 16.
'

Copper 41 ... 32.

Iron 65 ... 50.

Steel 99 ... 54.

Oak 7

Ash 12

The numbers in the first and second columns refer to the drawn
and annealed states of the metals respectively. The tenacity of

wood is of course very much smaller when the length of the rod is

taken across the grain than when it is taken in the direction of the

grain.



CHAPTEE XII.

THE CONSTITUTION OF MATTER.

139. EARLY in the history of science, discussion arose regarding
the possibility of the infinite divisibility of matter. A drop of

water may be subdivided into smaller drops of water
; but this

process cannot be indefinitely continued, for a point is ultimately
arrived at beyond which subdivision cannot be carried without

alteration of the chemical nature of the substance. But the

problem with which we are now concerned goes deeper than this :

we wish to know whether or not we would ultimately reach an

indivisible part, or atom, of matter.

No answer can be given yet to this question, though various

hypotheses have been framed regarding the ultimate constitution,

or structure, of matter.

One of the most famous of these hypotheses is known as the

Lucretian Hypothesis of hard atoms.

According to Lucretius, hard atoms exist ;
and they are indivisible

because they are infinitely hard. The reason which he gave for

their existence was that there must be a limit to the 'decay of

matter which he asserted to be a more rapid process than the

agglomeration, or building up, of matter. If there were no such

limit, all matter would, he said, have disappeared in the course of

infinite past ages. His hypothesis may be true, but his assumption,

upon which it was based, is not true ; for we know that the

building up of matter into larger parts is a more rapid process than

its disintegration.

Lucretius further asserted that there must be void spaces between

the atoms, otherwise motion of solids in fluids, such as that of a

fish in water, could not occur. Here, again, his reason is not con-

clusive, although his conclusion is correct. Motion of solids in

fluids could occur even if the hard atoms were closely packed

together. This we know by the principle of fluid circulation in
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re-entrant paths. But the fact that all matter is compressible shows

that there must be intervals between the hard atoms.

140. The atomic hypothesis of Boscovich is a mere mathematical

device, which enables us to avoid the physical difficulties of the

problem. Boscovich looked upon the atoms as mathematical

points endowed with inertia and with attractive or repulsive forces

varying' with the distance. These forces are always attractive when
the distance exceeds a certain superior limit, and are always re-

pulsive when the distance falls short of a certain lower limit. They
become infinite when the distance vanishes, so that no two atoms

can occupy the same position at the same time. This thepry may
be worked out so as to determine the properties of a continuous

medium so constituted. It has recently been developed by Sir W.
Thomson.

141. The most recent atomic hypothesis and the one possessed

of the greatest interest at the present day is the vortex-atom

hypothesis of Sir W. Thomson. According to Thomson, matter

consists of the rotating parts of a perfect ( 74), inert fluid, which

fills all space.

Since the fluid is perfect, any part of it, being once set in motion,

will remain in motion for ever, and will be completely distinguished
from all other parts. Thus the principle of conservation of matter

is an essential part of the hypothesis.

The ultimate parts or vortices are indivisible, not from being

perfectly hard but, because it is impossible to get at them in order

to divide them.

The properties of such vortices may be illustrated by means of

smoke-rings, such as those which are occasionally seen issuing from

the funnel of a locomotive when the door of the furnace is suddenly

closed, or those which are at times blown from the mouth of a

cannon. These smoke-rings may readily be produced by means of

a box one end of which is flexible and the other end of which is per-

forated by a circular opening three or four inches in diameter. If a

strong solution of ammonia be sprinkled on the floor of the box, and

if a vessel containing a strong solution of hydrochloric acid gas (or,

preferably, common salt on which strong sulphuric acid is poured)
be also introduced into it, dense white fumes of ammonium-chloride

are formed. A slight blow on the flexible end of the box is sufficient

to drive out a portion of the air from the interior. This part
revolves round and round, in the manner which is indicated in

section in Fig. 73, and forms a complete circular vortex, the course

of which may be traced for some distance through the surrounding
still air. As the ring advances, its speed diminishes, and its
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diameter increases; and at last it disappears, its motion being

stopped by friction.

If a second ring be projected after the former, with slightly

greater speed and nearly in the same line, actual collision will not

ensue, but each will move aside vibrating as an elastic ring would
after direct impact. If it be projected exactly in the same straight
line as the first, the second one will grow smaller as they approach,

and, its speed increasing, will pass through it. If the relative speed
of approach be not too great, the two rings will not separate, but

FIG. 73.

will continue to revolve round each other in the manner indicated.

This corresponds to molecular or chemical combination of vortex

atoms.

Currents are produced in the surrounding fluid which flow for-

wards in the direction of motion through the interior of the ring

and pass back round the outside of it. It is the action of these

currents which prevents actual contact between two impinging

rings, and which makes it impossible to divide a ring formed in a

perfect fluid.

The circular atom is the simplest which can exist, but a vortex -

atom may be built up of any number of simple, or knotted, rings,

linked, or locked, together in any manner whatsoever.

The mathematical difficulties which beset the investigation of

the motion, and the mutual action, of vortices are so great that

they have been overcome as yet only to a very slight extent. But,

in so far as they have been overcome, the results are not unfavour-

able to the hypothesis.
The great recommendation of the hypothesis is that it postulates

nothing but the inert vertically moving fluid. All the known

properties of matter are to be deduced from that one postulate.

Other hypotheses assume the existence of special inter-atomic

forces, and, if one assumed set fails to produce required results, a

new set can be conjured up to suit the case.

Further adaptations of the vortex theory will be given in next

chapter, and in Chap. XXXIII.
142. Standing in distinct contrast with these atomic hypotheses,

we have the hypothesis that matter is continuous but intensely

heterogeneous. The atomic hypotheses may be very roughly illus-
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trated by a brick wall built without mortar. The separate bricks

represent the various atoms, and there are gaps between them.

The hypothesis which we now consider is similarly illustrated by. a

wall in which the gaps are filled up by cement. Viewed from a

distance, the whole seems homogeneous (as matter does even when
we inspect it with the most powerful microscopes) but, if suffi-

ciently closely inspected, it is seen to be heterogeneous.

Heterogeneity is a necessity whether atoms exist or not. This

is indicated by many physical phenomena, notably by the disper-

sion of light, which, if the undulatory theory be true, could not

occur were matter homogeneous- and continuous.

148. If we assume the existence of molecules which exert action

in all directions throughout a small range, we can explain the

various phenomena of crystalline structure. Let us suppose first

that the molecules are in .stable equilibrium under their mutual
action when their centres are at a definite distance apart. We can

obviously make a model of such an arrangement by means of equal

spherical balls or marbles, a molecule being supposed to be situated

at the centre of each.

FIG. 74.

We may lay down a plane triangular arrangement of marbles

(Fig. 74), and then build up a solid by placing a second set of

marbles above the first, so that each marble in the second set fits

into the hollow between three in the first set, and so on. In this

way we form a regular tetrahedron.

This tetrahedron has six edges, and, if these edges be pared off

by planes equally inclined to the adjacent faces, we ultimately get
a cube.

The cube has eight vertices, and, if these vertices be pared off

by planes equally inclined to the faces which meet at these vertices,

a regular octahedron is obtained.

If the twelve edges of the cube be bevelled by planes equally
inclined to the adjacent faces, a rhombic dodecahedron is ulti-

mately produced.
It is by no means difficult to account in this way for all the
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various symmetrical forms of crystals belonging to the cubic

system ; and, if we replace the component spheres by ellipsoids of

revolution, we can account for all known crystalline forms.

We are thus led to believe that crystalline bodies are built up of

particles which set themselves, under the action of their mutual

forces, in the position of least potential energy, i.e., in the position
of stable equilibrium. The strongest proof of this which we can.
have is contained in the fact that the lengths of the edges of any
given natural crystal are expressible as multiples of small whole

numbers.

144. The square order of arrangement (indicated in the above

figure) in which any one sphere touches four spheres in the layer

immediately below, is in no way different from the triangular

arrangement just considered; for, if we remove an edge row of

spheres from the triangular pyramid, it. is at once evident that the

particles are arranged in square order in planes which bevel an

edge symmetrically.
In both the triangular and the square order of arrangement, any

one particle touches twelve others. In the triangular order, a

particle touches six others in its own layer, and three in each of the

adjacent layers. In the square order a particle touches four in each

of these layers.

It is true indeed that all the crystalline forms of the cubic system

may be explained by two other methods of arrangement, but these

are of no interest to us physically, as they do not correspond to

that position of most stable equilibrium which free, mutually
attractive, particles would naturally assume. Thus we might build

up a cube first of all on the square order of arrangement a

oo
oo

FIG. 75.

particle in any one layer resting on the top of one in the subjacent

layer ; and, from this cubic form, we might then, as above, produce
the other crystalline forms. Again, we might start with an open

square arrangement (indicated in Fig. 75) the particles in any one

layer being so far apart that another particle which is set in the

hollow between four will just touch a particle which is set in the

corresponding hollow on the other side of these four. In this way,
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also, all the crystalline forms of the regular cubic system may be

produced. In the former method, any particle touches four particles

in its own layer, and one particle in each of the adjacent layers
six in all

;
in the latter method, a particle touches none in its own

layer, four in each of the layers immediately preceding and succeed-

ing its own, and one in each of the layers outside of these ten

altogether. In neither of these cases is the equilibrium so stable

as in the case which was considered in last section.

145. Many other physical phenomena, besides those which are

exhibited by crystalline bodies, make it a practical certainty that

matter is molecular in its structure
;
and these phenomena also enable

us to obtain approximate estimates of the range of the molecular

forces, and of the average distance between contiguous molecules.

One such class of phenomena is that exhibited by liquid films.

We have seen
( 125) that the existence of molecular forces would

account for surface-tension. And we have seen, also ( 126), that

the surface-tension remains practically constant until the thickness

of the film is very largely reduced. There are optical methods

( 218-221) by which the thickness can be very accurately ascer-

tained. Keinold and Riicker have shown by these methods that the

surface-tension of a soap-bubble begins to diminish when the thick-

ness is between 96 and 45 micro-millimetres (millionths of a

millimetre, one inch being about equal to 25'4 millimetres). It

diminishes to a minimum when the thickness is 12 micro-milli-

metres, and then increases again to a maximum.
Plateau had previously shown that the tension is unaltered when

the thickness is reduced to 118 micro-millimetres, and he concluded

that the range of molecular forces is less than 59 micro-millimetres.

(Maxwell, however, has given theoretical reasons for the belief that

the tension may not alter until the total thickness of the film is equal
to the range of the forces, which would make Plateau's superior

limit 118 micro-millimetres.)

By measurements of the height to which liquids rise, because of

the so-called capillary forces, between parallel glass plates which

were coated with very thin wedge-shaped metallic films, Quincke
was led to the conclusion that the forces between the glass and the

liquid became evident when the thickness of the metallic film was
50 micro-millimetres.

Wiener has found that the phase of the vibrations of light ( 243)

which is reflected from a thin film of silver deposited on mica

begins to alter when the thickness is 12 micro-millimetres, and that

it was possible to detect the presence of a film of silver not exceed-

ing 0'2 micro-millimetre in thickness.
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Estimates of the magnitude of the molecular range have also

been based upon the thickness of the films of gas which are con-

densed upon solids, but these are open to great objection.
From all these results we may conclude that the order of magni-

tude of the range of molecular forces is about 50 micro-millimetres,
or one five-hundred-thousandth part of an inch.

146. It is possible, also, to obtain an estimate of the coarse-

grainedness of matter; that is, of the average distance between
molecules.

If (see 324) .two plates of different metals, say copper and zinc,

be placed in contact, each becomes electrified oppositely, and so they
attract each other. If the plates have an area of one square cen-

timetre and be at a distance of one-hundred-thousaiidth of a centi-

metre apart, they will, when joined by a metallic connection, attract

each other with a force of two grammes weight. Hence the work
done in bringing them into this position by means of the electric

attraction alone would be 2/100,OOOths of a centimetre-gramme. If

we now build up a cube of such pieces of metal, alternately zinc

and copper, the thickness of each being l/100,000th of a centi-

metre, and the distance apart of each pair beihg l/100,000th of a

centimetre, the work done by the electric attraction is 2 centimetre-

grammes. If this work were spent in heating the mass of metal,

the temperature would rise by less than the sixteen-thousandth part
of a degree centigrade. But if the thickness of the plates and

their distance apart were l/100,000,000th of a centimetre, the work
would be sufficient to raise the temperature of the mass by nearly
62 C. And, if the plates and the spaces between them were made

yet four times thinner, the work would produce more heat than is

given out by the molecular combination of zinc and copper. Hence
the magnitude of the contact-electrification of zinc and copper
must sensibly diminish before the substances are so finely divided

as we have supposed. But this suggests that there cannot be many
molecules in a thickness of the l/100,000,000th of a centimetre

possibly the coarse-grainedness may even be on a larger scale.

We have already seen
( 126) that the work required to increase the

area of a water film by one square centimetre is numerically equal
to the tension of the film per linear centimetre. But the magnitude
of the tension is about 16 centigrammes weight per linear centi-

metre. Hence, if we increase the surface of a water film by n

square centimetres, we have to do n times 16 centimetre-centi-

grammes of work. But a water film cools when it is stretched ;

and Sir W. Thomson has shown that, if the temperature is to be

kept constant which is necessary if the tension is to remain
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constant we must supply heat to the film, to an extent which

would require the expenditure of about half as much work again.

So, finally, if the area of a water film be increased, at constant

temperature, by n square centimetres, work must be expended to

the extent of 24ti centimetre-centigrammes. If we start with a cubic

centimetre of water, and increase its area (and therefore diminish

its breadth) one-hundred-million-and-one-fold, we must expend
2,400,000,000 centimetre-centigrammes of work. But this work, if

spent in heating the liquid, would be more than sufficient to

completely volatilize it. Hence, if the thickness can be diminished

to this extent, the surface-tension must greatly decrease in magni-
tude. And so we conclude that there cannot be many molecules of

water in a thickness of l/100,000,000th of a centimetre.

The fact of the dispersion of light in its passage through dense

transparent media proves, as has been already stated; the hetero-

geneity of these media. Starting from certain assumptions regard-

ing the constitution of such media, Cauchy deduced results which

indicate that there are only about ten molecules to the wave-length
of violet light (about 4'10- 5

cm.) in ordinary glass. This cannot be

admitted for many reasons. But Thomson has recently shown that

it is possible to modify Cauchy's theory in such a way as to widen

the limit which it sets.

The kinetic theory of gases gives ( 153) another, and even more

certain, indication of molecular magnitude.
From these four courses of reasoning, Sir W. Thomson concludes

that there are not more than 109
,
nor less than 5(10)

6
,
molecules per

linear centimetre in ordinary liquids or solids.

Another method consists in measuring the thickness of the

dielectric layer separating an electrolyte from the electrodes. This

thickness is presumably the distance between the molecules of the

liquid and the contiguous molecules of the solid electrode. The

method gives values of the number of molecules per linear centi-

metre which vary from 107 to 5(10)
8

.

Again, if we suppose a cubic centimetre of any liquid to be

divided up by three sets of n planes parallel to the three pairs of faces

of the cube, the surface of the liquid is increased by 6n square
centimetres. The work which is required to produce this increase

of surface is (neglecting the equivalent of the heat required to keep
the temperature constant) 6wT centimetre-grammes, where T is the

surface-tension expressed in grammes weight per linear centimetre.

[It is assumed, of course, that T is practically constant during the

process. We have seen that Plateau found it to be constant in a

water film down to a thickness of 118 micro-millimetres. And
11
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Eeinold and Kiicker have shown that the value of the second

maximum, which is reached when the thickness is 12 micro-milli-

metres, only differs from the former value by about 0*5 per cent.]

If n be the number of molecules per linear centimetre, the quantity
6nT is approximately equal to the work required to break up the

cube of the liquid into its constituent molecules. It is therefore

equal to the work-equivalent of the latent heat ( 276, 289) of the

liquid. If L be this quantity, we have, therefore, as an approxi-

mation, n= L/6T. The liquids, water, alcohol, ether, chloroform,

carbon bisulphide, turpentine, petroleum, and wood spirit, have,

according to this method, 50, 52, 30, 15, 19, 30, 40, and 70 millions,

respectively, of particles per linear centimetre. These numbers all

lie well within the extreme limits given by Thomson. Of course,

no stress is to be laid upon the relative, or even the absolute, values

of the figures; the point of interest is the close agreement as to

the order of the unknown quantity.



CHAPTEK XIII.

THE KINETIC THEORY OF MATTER.

147. THE first glimmerings of the idea that the observed properties

of matter may be due to motion. occurred as far back as the time of

Democritus and Lucretius. But the idea did not develop into an

actual physical hypothesis until Hooke, and, later, Daniell Bernoulli

suggested that gaseous pressure may be due to the impact of the

molecules of the gas upon the sides of the vessel which contains it.

Somewhat later, Le Sage, as we have already seen, applied the same

principle to the explanation of gravitation, and various developments
were made by Prevost and Herapath. In 1848, Joule calculated the

speed which the particles of a given gas must have in order to pro-

duce a given pressure. But the full mathematical development of

the Kinetic Theory of Gases is due mainly to Clausius and Maxwell.

148. In the kinetic theory it is supposed that the particles of a

gas are darting about in all directions with great average speed.
Some of the particles may, for a short lime, have very much smaller

speed than this average may indeed be at rest for a moment ; and
others may be moving with much greater speed than the average.
This average is the square root of the mean of the squares of the

individual speeds of the various molecules, and is called the mean

square speed.

Collisions are supposed to occur amongst these particles. In the

interval between any two successive collisions of a particle there is

a certain average distance which the particle describes, and this

distance is called the mean free path. The mean free path, under

ordinary conditions, is large in comparison with the diameters of

the molecules, which are regarded as being smooth hard spheres
with unit co-efficient of restitution.

The collisional force between two molecules is assumed to be

repulsive, just as it would be in the case of elastic solids. But,

actually, in. many, or even most, of the so-called 'collisions,'

true contact may not occur. The real forces may be attractive, and
112
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two rapidly-moving molecules coming within range of mutual

attraction may whirl round each other in sharply-curved paths, as a

comet dashes round the sun, the result being the same as if actual

contact had taken place. Some contacts must occur unless the

molecules are infinitely small, which we cannot admit.

Experiments made by Joule and Thomson on certain gases show

that, if the density of each be varied while its total energy remains

constant, the temperature is somewhat higher when the density is

greater. Hence, if
( 150) equality of temperature in two portions

of gas means equality of average kinetic energy per molecule, it

follows that the potential energy is somewhat less in the denser

condition. But this indicates molecular attraction at the average
distance of the molecules experimented with.

149. Gaseous Pressure. Boyle's Law. Let n be the number of

molecules per unit volume which are moving in a given direction

with speed which differs extremely little from a certain quantity u.

The number of such molecules which pass per unit time across unit

area drawn perpendicular to the direction of motion is nu
; and, if

m be the mass of each molecule, the momentum which these

particles carry with them is mnn?. By Newton's Second Law of

Motion, this must be equal to the pressure produced by such mole-

cules on the side of the vessel. Hence, the square of tlie speed

being involved, we see that, so far as the pressure is concerned, we

may assume that each particle is moving with the mean square speed.

The total pressure per unit of area in the direction considered,

which we may assume to be that of the #-axis, is therefore 7?zN%2
,

where N is the total number of particles per unit volume, and

u2 is the mean value of u2 for all the molecules. Similarly the

pressures per unit area in the direction of the y and z axes may be

written wN^and mNw2
respective^'. But, in a gas which is at

rest as a whole, all these quantities are equal ; and so we have for

the pressure p the expression p = wN(.2 + y2 + w2
), which we

may put in the form

p = imNV2 = ipV2 ...... (1)

where V is the mean square speed independent of direction and

is the density of the gas. By means of this result, Joule calculated

the value of V in various gases. In hydrogen it is somewhat over

6,000 feet per second._
We have seen that V is constant when the temperature is steady,

so that this equation asserts that the density of a gas is directly

proportional to the pressure which is Boyle's Law.
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150. Avogadro's and Charles' Laws. The equation (1) may be

written

pv = T (2)

where v is the reciprocal of p, i.e., it is the volume of unit quantity
of the gas. If we compare this with the expression ( 266) py= RT,
we see that the mean square of the speed of molecular motion is

proportional to the absolute temperature as measured by a gas
thermometer

( 266, 267) filled with the particular gas under

consideration.

It follows from the principles of the kinetic theory that, in a

mixture of two gases in equilibrium, the average kinetic energy per
molecule of each gas is the same. And, if we assume the truth of

Avogadro's law that there is the same number of molecules in unit

volume of each of two gases at given temperature and pressure,

(1) shows that in two such gases the average kinetic energy per
molecule is identical. Conversely, if we assume as is done in the

kinetic theory that two gases at the same temperature have the

same average kinetic energy per molecule, we can deduce Avogadro's
law as a consequence. But it must be carefully observed that the

truth of Avogadro's law does not establish the truth of this assump-
tion

;
it merely proves on this theory that two gases at the same

temperature and pressure have equal average kinetic energy per
molecule. If, however, the gases rigidly obey both this law and

Boyle's Law, the truth of the assumption follows : for then, in any
one gas, mV'2 remains constant, no matter how much p may
vary.

Equation (2) shows that any gas which obeys these laws will

expand equally for equal increments of temperature, provided that

the temperature be measured by the average kinetic energy per
molecule, which is a generalisation of the above assumption. Andj

further, with this proviso, the equation also shows that any two
such gases will expand proportionately as their common temperature
rises. These two results constitute Charles' Law ( 265).
The deviations from Boyle's and Charles' Laws can be explained

on the kinetic theory if we take into account molecular action

between the particles at greater than collisional distances.

151. Diffusion. Thermal Conductivity. Viscosity. The ques-
tion of gaseous diffusion has been already discussed in Chap. VIII.
The kinetic theory asserts that each particle is darting about with

great speed, and is only prevented from moving rapidly away from
the neighbourhood of its position at any given instant by means of

the great number of collisions to which it is subjected by other
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particles. These collisions change the direction of motion of the

molecule an immense number of times per second, and thus the

diffusion of particles throughout a mass of gas is a very slow

process. The law o&inter-diffusion given by the theory is identical

with that deduced from observation.

The diffusing molecules carry their kinetic energy with them,
and there is interchange of energy during collision. This trans-

ference of energy constitutes (Chap. XXIV.) the process of thermal

conduction. And this process is slightly more rapid than the

transference of the molecules themselves
; for, though a molecule

may be turned back by a collision, its energy is handed on by
means of the molecule which collides with it.

If two portions of gas are moving relatively to each other, the

molecules of each inter-diffuse, and consequently there is inter-

change of momentum. But, on the average, the momenta of the

particles of each gas are in opposite directions, and so the relative

motion is gradually stopped. This explains gaseous viscosity. An
illustration may be taken from two railway trains running on parallel

lines past each other. If luggage wer.e thrown constantly from

each train into the other, the interchange of momentum resulting

from the impacts might soon reduce the trains to relative rest.

152. Evaporation, Dissociation, etc. As a gas becomes more
and more condensed the mean free path of its molecules becomes

smaller and smaller, until, -in the liquid state, its magnitude is

excessively small in comparison with the magnitude of the mean
free path of a gaseous particle. Still, in the liquid, the molecular

action is precisely of the same character as that of a gas. But, as

a result of the comparative closeness of the molecules, the trans-

ference of energy by impact (that is, the conduction of heat) is a

much more rapid process than the transference of the molecules

themselves
; and the rate of diffusion of the molecules of a liquid is

very small in comparison with the rate of diffusion of gaseous
molecules.

In a liquid some of the quickly-moving particles may escape

from the attraction of neighbouring molecules and become particles

of vapour. At the same time some vapour particles may become

entangled in the liquid. When these two processes take place at

the same rate, the liquid and its vapour are said to be in equilibrium.
When the former process occurs most rapidly, the liquid is said to

be evaporating; and, when the latter process preponderates, the

vapour is said to condense.

Dissociation occurs when an impact is so violent as to break up a

compound molecule into its constituent parts. Probably dissocia-
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tion occurs in all fluids to a slight extent, even when their tempera-
ture is far below the ordinary temperature of dissociation, but, in

this case, recombination occurs as rapidly. As the. temperature

rises, the impacts become more violent and dissociation goes on at

a greater rate, but not at so great a rate that recombination cannot

occur as quickly. When, finally, the so-called temperature of

dissociation is reached, recombination is unable to balance dissocia-

tion, and the substance is resolved into its components. If the

temperature is again allowed to fall, recombination may, or may
not, occur, depending on the condition whether or not energy will

be degraded ( 11) in the process. If more energy will be degraded

by the occurrence of recombination than by its non-occurrence,

recombination will ensue. [See 280.]

An important result of the kinetic theory is that, in a vessel

filled with a mixture of different gases, the final distribution of

each gas under the action of gravity is the same as if no other gas
had been present.

Another very important result (which, together with the former,

is due to Clerk-Maxwell) is that a vertical column of gas, when in

equilibrium under the action of gravity, has the same temperature

throughout, or, in other words, gravity has no effect upon the

conditions of thermal equilibrium.

153. An expression has been deduced from this theory by which

we can calculate the length of the mean free path of a molecule in an

ordinary gas, such as air, in terms of observed values of the

viscosity, and of the material and thermal diffusivities. According
to Maxwell the value of this quantity in the case of hydrogen is

3'8(10)~
6 of an inch (roughly four millionths). The theory also

shows that the number of particles per cubic inch of ordinary gases
is about 3(10)

20
(that is, 300 million million millions), and that

the diameter of a (supposed hard and spherical) molecule is about

2-3(10)
-8 inch.

The following results are given by Maxwell :

Hydrogen. Oxygen. Carb. Oxide. Carb. Acid.

Mean square speed at C.

expressed in feet per second 6190 ... 1550 ... 1656 ... 1320

Mean free path in thousand-

millionths of an inch ... 3860 ... 2240 ... 1930 ... 1510

Number of collisions per
millionth of a second ... 17750 ... 7646 ... 9489 ... 9720

Diameter per inch x(10)-n ... 2300 ... 3000 ... 3500 ... 3700.

The length of the free path increases as the density of the gas
diminishes. Tait and Dewar first found that, in a good vacuum, it
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may amount to several inches. The action of Crooke's radiometer

depends upon the great length of the free path. [This instrument
consists of four vanes of mica mounted at the ends of two

light rods, which are fastened by their centres to a vertical axis

which is free to rotate. Each disc of mica lies in the vertical

plane which passes through the rod to which it is attached, and
the two rods are placed at right angles to each other. Also each

disc is blackened on one side and is bright on the other, the

blackened sides being all similarly situated with regard to rotation

around the vertical axis. The whole is mounted inside a glass
vessel from which the air is largely extracted. Eadiant heat (or

light) falling upon the vanes is absorbed more freely by the black

surfaces than by the bright surfaces, and so the former become
hotter than the latter. Hence the particles of air which impinge

upon them are driven off again more violently than are the particles

which impinge upon the bright sides, and so, by the third law of

motion, the necessary reaction results in rotation.

The exhaustion of the air is carried to such an extent that a

particle which is repelled from a disc rarely encounters another

particle before it strikes the side of the vessel. If the exhaustion

is carried too far the effect is diminished, because the number of

particles which strike a disc in a given time is lessened.]
Gaseous matter whose molecules have very large free paths is

sometimes called ' radiant ' matter.

154. The statement that the diameter of one of these hypothetical

(hard, smooth, spherical) molecules is 2*3 hundred-millionths of an

inch is not intended to imply that this is the size of an actual

material molecule. It merely asserts that, on the average, this is

about the least distance to which the centres of two molecules can

approach during collision.

But, even if they be smooth and spherical, the molecules of

matter cannot be hard ;" for, in this case, the time of describing the

mean free path must vary inversely as the average speed of the

particles. But, on the contrary, Maxwell's experiments on gaseous

viscosity show that the time is independent of the speed. This

would be possible with soft elastic particles.

There are other, even more cogent, reasons why the molecules

cannot be smooth, hard, and spherical. Thus the great complexity
of the spectra (Chap. XVII.) of many gases and vapours shows that

the molecule is a very complex structure with a great many degrees
of vibrational freedom. But a hard, smooth, spherical molecule

has, in effect, only three degrees of freedom all translational. And

again, the theory asserts that each additional degree of freedom
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which the molecule possesses requires that the ratio of the specific

heat ( 271) of the gas at constant pressure to that at constant volume

shall be made larger ;
and the actually observed values of this

ratio are far smaller than that indicated by the theory. Further, it

seems certain that, in a gas whose molecules are small, elastic, solid

bodies, the energy of translation of the molecules must gradually
be converted into energy of vibration of smaller and smaller period,

so that finally the particles would come to rest.

155. But these difficulties with which the theory is beset do not

lead us to discard it. Its results, briefly indicated in part in the

preceding sections, place it upon far too firm a basis; and we seek,

rather, to inquire more closely into the truth or probability of the

fundamental assumptions of the theory, and into the correctness of

our deductions from them. The difficulty regarding the specific

heats seems to be due largely to a too rapid theoretical generalisa 1

tion. And the difficulty regarding the transformation of the transla-

tional energy of elastic solids into vibrational energy does not,

Sir W. Thomson remarks, seem to apply to the case of fluid

vortices.

156. We are not, however, to rest content with a kinetic theory of

gases only. We wish, if possible, to recognise all the properties of

matter as the results of motion of the parts of a medium in which
we postulate nothing but incompressibility and inertia.

We can make, from rigid portions of matter, a complex which

possesses elasticity. A gyrostat (essentially a heavy fly-wheel, of

great moment of inertia, free to rotate about its axis) mounted on

gymbals, but not set in rotation, serves very well as a model of a

plastic body. It may be turned about into any position which we

please, and has no tendency to re-assume its original position. But,
if the fly-wheel be set in rotation about its axis, the system at once

acts as if it possessed rigidity and elasticity. If it is sharply struck,

so as to suddenly turn its axis to a slight extent from its original

direction, it will oscillate rapidly about, and finally come to rest

in, its first position.

Again, by means of rigid rods on which revolving fly-wheels are

pivoted, we can construct a framework, which acts like an elastic

spring, and may represent an elastic molecule. By joining together
millions of such arrangements, it is possible to construct a model of

an elastic solid through which distortional waves will pass, and

which, under proper conditions, will exhibit, with regard to these

waves, the same phenomena as those which are shown when light

passes through a medium placed in a field of great magnetic
force.
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The vortex theory shows that all that can be done by such a model

might be done by a model in which vortices in a perfect fluid take

the place of the revolving fly-wheels. And further, with such

vortex molecules we can construct what cannot be done by the

rigid fly-wheel molecules a model of a gas, whose molecules exert

mutual force.

Such considerations lead us to believe that we may ultimately be

able to explain apparently statical properties of matter in terms of

motion.



CHAPTEE XIV.

SOUND.

157. THE word sound is generally used with reference to the

physiological effect which results from excitation of the hearing

organ. In physical science the term is applied to the external

cause of this subjective impression.
We are accustomed to say that sound travels through a given

medium, whether solid, liquid, or gas ;
and by this we imply that the

particles of the medium do not move forward from the source of the

sound to the place at which it is heard. Intermittent impact of such

particles would account for the vibration of the tympanum which is

necessary to the production of the mental impression of sound.

But it is quite obvious that the particles of a solid cannot move for-

ward in the manner indicated, and it would be unscientific to

assume that the method of transference of sound in a gas differs

totally from the method of transference in a solid body, especially

when we consider that sound, after travelling through a solid, may
be communicated to, and travel through, a gaseous medium, such.as

air. We do not, however, need to rely upon any such semi-meta-

physical argument, for the speed of sound in air is so great that the

forward motion of the particles did it occur would correspond to a

hurricane of much greater violence than any ever observed. In short,

we know that the passage of sound through air is not accompanied

by such motion witness the well-known fact that sound is usually

best heard in still air.

But the passage of sound through air may communicate vibratory

motion to objects immersed in it e.g., the tympanum and it

therefore involves transference of energ}r
,
which implies motion of

matter. This motion can be nothing else than vibratory motion of

the particles of the medium, the state of motion being handed on

from particle to particle in the form of a wave which may cause

vibratory motion of any solid object which it reaches, just as a

wave sent along a stretched cord may cause motion of any object

to which the cord is attached.
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The vibrations of the particles of a medium may be transverse to

the direction in which a wave travels, or they may take place in that

direction. A little consideration will show that, in a sound-wave,
it is the latter which must take place. Let us suppose that a

sound is started by an explosion at a certain point. We know that

the sound travels outwards in. all directions from this point as

centre
; and we know also that the particles at the point are driven

outwards by the explosion, so as to produce a state of great con-

densation in the immediate neighbourhood. But, the medium
being elastic, the compressed portions expand, and so cause com-

pression of the adjacent parts, and thus the state of compression
travels outwards from the centre. Since a state of rarefaction is

produced at the very centre of the explosion, the particles in the

compressed part just outside rush back so as to fill the partial

vacancy, and so the state of compression is succeeded by a state of

rarefaction, which travels outwards at the same rate. Thus we see

that sound consists in the propagation of a condensational-rarefac-

tional wave, the particles of the medium vibrating to and fro in the

direction in which the wave travels.

[It is easy to construct a model, which will roughly illustrate this

process, by means of a row of equidistant balls which are attached

by strings of equal lengths to a horizontal straight rod.]

The distance, measured in the direction of propagation, from any
particle to the next similarly-moving particle, is called the wave-

length. It may be measured, for example, between points of

maximum condensation, or between points of maximum rarefaction.

The actual motion of any particle is a simple harmonic motion, and
the terms used in the discussion of such motion ( 51) amplitude,

phase, period, etc. are therefore used here with similar meanings.
It is customary to speak of a single disturbance propagated

through the air as a noise. The term sound is employed when a

periodic disturbance, or series of disturbances, is propagated the

sound being musical, or non-musical, according as the disturbances

are of regular or of irregular period.

When a musical sound is produced, it is usual to speak of the note

or tone which is given out, but it is better to limit the application of

the latter term to a simple sound of one definite period only. We
shall see subsequently that no sound usually given out by a musical

instrument consists of a simple tone only. The term note may
conveniently be applied to the composite sound which is actually

given out.

All sounds differ from each other in three points only intensity,

pitch, and quality. These will be treated in detail afterwards.
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158. We shall now proceed to investigate the propagation of

sound through any gaseous medium.

For the sake of simplicity, we shall suppose that a disturbance is

propagated in the form of a plane wave ; that is to say, we assume

that any continuous set of particles, the motion of which is in the

same phase, lie in a plane.

Let u be the speed with which the sound-wave travels. The

actual speed, v, of any particle is the resultant of this speed u and

the speed due to the simple harmonic motion of the particle.

Hence an ideal plane, which is perpendicular to the direction in

which the sound is going, and which moves in that direction with

speed u, possesses the characteristic that the instantaneous speed of

all particles which cross it is constant. (The value of this speed

depends, of course, upon the initial position of the plane.) A
statement equivalent to this is that the plane moves so as to be

always in a position of constant density.

If p be this density, we may write

pv = c, .......... (1),

where c is a constant
;
for this equation expresses the fact that the

total momentum of the particles which cross unit area of the plane
in unit time is invariable. But any two such planes, which remain

equidistant, obviously contain between them a constant amount of

matter which moves with constant total momentum. Hence c

is absolutely constant, and so, by the methods of Chap. IV., we get

from(1)

If the pressure per unit area of the plane under consideration be jp,

the pressure per unit area of another plane at a distance dx from it is

(p -\- dp/dx , dx). Hence the difference of pressure per unit area

of two such planes is - dp/dx . dx. But, by the second law of

motion, this must be equal to the instantaneous rate of increase of

the momentum of a column of the gas, of unit section, contained at

the given instant between these planes. Hence, the amount of

matter in this little volume being pdx, we get pdv/dt= -
dp/dx.

That is, pvdv/dx = -
dp/dx, and so

dp~ pv
'

From (2) and (3) we have at once

d (4).
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In a gas which obeys Boyle's Law and Charles' Law, the relation

p= Rfy holds E being a constant and t being the absolute tempera-
ture. If the temperature be constant, this gives

and (4) takes the form

i,2= P= IM .......... (6).

P

But the compressions and rarefactions which take place when
sound passes through a gas take place so rapidly that the equation

p = Tltp does not represent the actual conditions. Instead of it we
must write ( 302)

where y is the ratio of the specific heat of air at constant pressure to

its specific heat at constant volume ; so that, instead of (5), we get

and (6) becomes

^= r^
=

rR* ........ (6').

159. The general equation (4) gives the value of v under all con-

ditions of the substance, and therefore (6') gives the value of v

under ordinary conditions of the gaseous medium, provided only
that we put the normal values of p and p in the expression on the

right-hand side of that equation.

Hence we see that, in cases in which (6') is sufficiently nearly

true, the speed of sound is independent of the pressure ; and that,

in all such cases, it is proportional to the square root of the

absolute temperature.

Also, in different gases under equal pressure and at the same

temperature, the speed is inversely proportional to the square root

of the density provided that (6) is true. The following table shows

how nearly the theoretical relative speeds correspond to the actual

relative speeds as observed in a few of the more common gases :

Observed. Calculated.

Air ... ......... 1-000 ...... 1-000.

Carbonic Acid ...... 0-786 ...... 0-811.

Oxygen ......... 0-953 ...... 0-952.

Hydrogen ......... 3-810 ...... 3'770.
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It must be remembered that these results are calculated on the

supposition that the gases are perfect.

[The following considerations enable us to deduce, in a much less

strict manner, the general conclusions arrived at by means of the

investigation of 158.

The speed of propagation of a given state of compression depends

upon the readiness with which the compressed gas recovers its

original condition ; and this, in a perfect gas, is proportional to the

resistance to compression, which, 104, is measured by the pressure.

But the readiness of recovery depends also upon the mass which has

to be moved before the substance can expand, i.e., it depends upon
the density, being greater the smaller the density is. Hence we see

that, in a perfect gas, the speed of sound depends only on the

temperature ;
for (the pressure remaining the same) the density

diminishes as the temperature increases, while, if the temperature
be constant, the pressure and density vary proportionately.]

160. Equation (4) gives, not merely the speed of sound in a gas

but, the speed of plane sound-waves in any substance. The
resistance to compression, &, is by definition, 104, the ratio of the

increase of pressure to the percentage decrease of volume which it

produces. But the percentage decrease of volume is equal to the

percentage increase of density. Hence we have &= (> . dp/dp, and so

(4) becomes

In the case of a perfect gas, Jc = p, and (7) becomes identical

with (6).

The speed of sound in water is nearly four times as great as it is

in air. This was found experimentally by means of observations
made at the Lake of Geneva, the waters of which are compara-
tively free from currents. A bell was sounded under water, and the

mechanism which rang the bell simultaneously fired a gun placed at

the surface of the water at the same spot. A large receiver filled

with air was placed below the surface at a known distance from the

bell. An observer, who listened at the extremity of a tube con-

nected with the receiver, knew when the sound which travelled

through the water reached the receiver. He also observed the

instant at which the sound of the report of the gun reached him
through the air; and so, knowing by the flash of the gun the
instant at which both sounds were produced, he compared the

speeds in air and water.

In solids the speed is still greater.
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The speed in air may be roughly found by observing the interval

of time which elapses between the instant of seeing the flash of a

distant gun and the instant at which the report is heard. .If the air

is not still, two simultaneous observations must be made, in one of

which the sound travels with the wind, and in the other of which it

goes against the wind. The mean of the two results must be

taken.

A more accurate method of determining the speed in gases will be

given afterwards ( 172).

161. The loUctness, or intensity, of a sound is due to the kinetid

energy per unit volume of the medium, and so it depends upon
the amplitude of vibration of the particles, being proportional to the

square of that quantity. For the same reason it depends also, other

things being equal, upon the density of the medium, being greater
as the density is greater, and vanishing when the density becomes

zero. Thus no sound is heard when a bell is struck inside a

receiver from which the air has been exhausted as completely as

possible.

[For the displacement of a particle which executes a simple
harmonic vibration is

2ff
,a sin

7p,

where T is the periodic time, and a is the amplitude. The speed of

motion, which is the time-rate of variation of the displacement, is

therefore

27T 27T

and the energy of the particle is

27T2

where m is the mass. In an interval of time r, which is very large

in comparison with T, the energy may be regarded as constant and,

equal to its average value during the period T. But this is
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The first term vanishes since T is very large in comparison with T,

and hence the kinetic energy is mTr-or/T
2
per particle, or p?r

2a2

/T
2
per

unit volume.

The maximum value of the kinetic energy per particle is

2w7r-/yT
2

,
and so the largest possible value of the kinetic energy

per unit volume is 2p7ra
2
/T

2
. Hence the total energy per unit

volume of a system of particles in simple harmonic vibration is (in

an interval of time which is large in comparison with the period of a

complete vibration) one-half kinetic and one-half potential. This

statement will obviously still be true, without the above restriction

regarding the interval of time, provided that the number of particles

per unit volume is very great, and that the wave-length of the dis-

turbance is very small.]

In still homogeneous air sound spreads outwards from the source

uniformly in all directions ;
and therefore particles, whose vibrations

are in a given phase, lie on the surface of a sphere, the radius of

which grows uniformly. Since the energy of vibration is distributed

over the surface of this growing sphere, it follows that the intensity

diminishes proportionately as the surface increases. It is therefore

inversely proportional to the square of the distance from the source.

Sound travels faster than usual when the air through which it

moves is blowing in the direction in which the sound moves, for the

two speeds are simply superposed. Similarly, when the wind is

blowing in a direction opposite to that in which the sound moves,

ct a,' a," 3C

FIG. 76.

the speed is distinctly diminished. And, In addition to this,

motion of the medium affects the distance at which the sound may
be audible. For, if ab represent the (vertical) front of a plane-wave

of sound travelling with the wind in the direction ax, it is evident,

since the motion of the upper strata of air is less retarded by
12
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friction than that of the lower strata, that the wave-front gradually

becomes more and more inclined to the vertical as it moves

forward. Successive new positions are indicated by the lines a'b',

etc. And the sound, instead of travelling straight forwards, is thrown

down towards the ground in the manner indicated by the curved

lines in Fig. 76. When the wind blows in a direction opposite

to the direction of motion of the sound, the sound is thrown up
from the earth's surface so as to be inaudible at comparatively

short distances.

162. Reflection of Sound. When sound strikes an obstacle, it is

reflected in such a way that the reflected ray (the word is used by

analogy from the phenomena of light, which, we shall see subse-

quently, are due also to wave-propagation) and the incident ray.

make equal angles with, and lie in a 'plane passing through, the

normal to the surface. Thus, if ab (Fig. 77) represent a plane
surface from which the ray ec is reflected in the direction cf, the

line cf lies in a plane passing through ec and the normal cd, and
the angles ecd and fed are equal.

This law is identical with that which obtains in the reflection of

light, so that all the results which are deduced in Chap. XVI. regard-

ing the reflection of light from surfaces will at once apply to the

case of reflection of sound. The law can be deduced as a result

of the fact that sound consists in wave-motion, in precisely the same

way as that in which the corresponding law is deduced in 186 as

a result of the wave-theory of light.

Echoes are due to the reflection of sound from buildings, rocks,

trees, clouds, etc. They occur even when there is no visible object
to account for their existence. In this case the reflection must
occur at the common surface of two large masses of air of different

densities, or containing very different amounts of moisture per unit

volume. If the reflecting surface be curved, the reflected sound may
be conveyed to a focus so as to be much more distinctly heard than

the direct sound.
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163. Refraction of Sound. Since the speed of sound has

different values in media of different densities, and since, in any one

homogeneous medium, the sound spreads out uniformly in all direc-

tions from a centre of disturbance, it follows that the direction in

which a ray is travelling is, in general, suddenly changed when the

sound passes from one such medium into another. If it pass
from a less dense into a more dense medium, the direction of

propagation is inclined to the normal at a smaller angle after the

interface is passed than before ; and the opposite statement holds

when the first medium is denser than the second. This phenomenon
is known as the refraction of sound. The law is that the incident

and the refracted rays lie in one plane with the normal to the

refracting surface, and make with it angles whose sines bear a con-

stant ratio to each other. If ab (Fig. 78) represent the intersection

of the common surface of the two media by the plane of the paper,
while cd is the normal, and if eo be the direction in which the sound

impinges upon the surface, while of is the direction which it takes

after entering the second medium, the angles i eoc and r=fod are

connected by the relation sin i=n sin r, where
/*

is a constant.

These results are identical with those which are observed in the

refraction of light .( 187), and the reasoning of 200 may be

applied directly to the present case.

A lenticular bag, filled with carbonic acid gas, has been found to

convey sound to a focus in precisely the same manner that a glass
lens conveys light to a focus.

164. Diffraction of Sound. When sound enters a room by an

aperture such as a window, it is equally well heard at all parts inside

the room. It bends round so as to penetrate every portion, and does
not cast a sharp

' shadow '

of an obstacle as light does. This bending
122
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of sound into the region behind an obstacle is termed diffraction.

We shall see afterwards that the same phenomenon also occurs,

under suitable conditions, in the case of light.

But it is possible, by proper means, to produce sound shadows.

The necessary condition is that the aperture through which the

sound passes, or the obstacle by which it is intercepted, shall be

large in comparison with the wave-length of the sound. Thiis a

sound made at one side of a steep high bank may be totally unheard

at the other. So, also, a sound may be clearly heard through a

hollow between two mountains, while it is inaudible in the region

behind either mountain. And, indeed, by using sound of sumciently
short wave-length, we can produce comparatively sharp sound

shadows of obstacles which are only a few inches in diameter.

(For' an explanation of the phenomenon, see the discussion of the

diffraction of light, Chap. XVIII.)
165. Interference of Sound. As sound consists physically of

waves of condensation and rarefaction, it follows that two sounds

may
' interfere

' with each other, according to the usual laws of inter-

ference of waves. Thus, if two sounds are travelling in the same

direction through a given medium, and if the intensity and wave-

length of these sounds are identical, there will be no resultant dis-

turbance of the medium, i.e., no sound will be heard, provided that

the maximum condensation due to one of the disturbances occurs

simultaneously with the maximum rarefaction due to the other.

If both condensations, and therefore both rarefactions, take place

together, a sound of four times the intensity will be heard, for the

resultant amplitude of vibration of the particles of the medium is

doubled. And, if the wave-lengths of the separate disturbances are

not precisely identical, the resultant sound will periodically vary in

intensity from the former (zero) to the latter (quadruple) value.

166. Pitch. The resultant vibration of a particle of air is, in

general, extremely complex ; but, when a pure tone is transmitted

through air, the vibration of each particle is simple harmonic.

There can, therefore, be no difference between one tone and
another except such as is due to a difference in the amplitude
of vibration or to a difference in the period of vibration. As the

amplitude of vibration determines the intensity of the sound, we
infer that the pitch of a note depends upon the frequency of vibra-

tion, i.e., upon the number of vibrations which are executed per
second.

That this is actually the case may be roughly ascertained by
means of very simple apparatus. If a piece of cardboard be

pressed against t*he edge of a toothed wheel, which revolves at a



SOUND. 181

definite rate, a sound is emitted which is of a fairly definite pitch.

As the speed of the wheel increases, i.e., as the number of impacts

per second between the teeth of the wheel and the cardboard

increases, the pitch of the note rises
; and, to a note of given pitch,

there corresponds a definite rate of rotation of the wheel, and

consequently a definite rate of vibration of the cardboard.

A much more accurate proof is obtained by means of the syren.

This instrument consists essentially of a perforated disc of metal,

the perforations being arranged in a circle round the centre, as in

the figure. A tube, through which air is driven, is placed behind

the disc
; and, as the disc revolves, each successive opening in it

FIG. 79.

comes opposite the end of the tube. As each blast of air passes

through, a state of condensation is produced, which is succeeded

by a rarefaction in the interval between twTo blasts. Hence a

sound-wave of constant period is set up when the disc revolves at a

uniform rate. The rate of rotation, and the number of perforations
in the complete circle, being known, we get at once the number of

vibrations per second corresponding to any note of given pitch.

When the disc revolves very slowly, no musical sound is heard,
but each separate air-blast can be distinctly heard. As the speed

increases, the ear ceases to distinguish the separate pulses, and a

note of very low pitch becomes audible. The speed still

increasing, the pitch of the note produced becomes higher and

higher, and at last it becomes so high that the note is no longer
audible. The limits of audibility vary considerably in different

observers, but, roughly speaking, a sound becomes inaudible as a

note when the rate of vibration falls short of 20 times or exceeds

70,000 times per second. The fact that a melody is perfectly heard
at different distances from the source shows that the speed of sound
does not depend upon the wave-length.

/ "The apparent pitch of a note depends tipon the relative motion of

I
'
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the hearer and the instrument upon which the note is sounded. If

the hearer approaches the instrument, the pitch of the note seems
to be heightened, because more than the normal number of vibra-

tions reach his ear in a given time
; and, conversely, if he recede

from the instrument, the pitch of the note will appear to be

lowered. As a particular case, if the rate of recession were

greater than the speed of sound, no sound could be heard.

167. Musical Intervals. If any particular note be taken as a

keynote, it is found that there are certain other notes, definitely
related to it as regards pitch, which produce specially pleasing
effects upon the ear when sounded with each other or with the key-
note. These are, therefore, the notes which are employed in the

ordinary major and minor scales, and the difference in pitch of any
two notes is called the interval between them. When two notes

have the same pitch, they are said to be in unison.

The chief interval is the octave, and it is found that, in order to

produce the octave of any given note, the rate of vibration must be

exactly doubled. The intervals into which the octave is subdivided

are not equal. The following table indicates their values. The
first column gives the names of the intervals which separate each

note from the keynote, and the relative rates of vibration in the

two notes forming each interval are given in the second column.

For example, nine vibrations are performed in the higher of two

notes separated by the interval of a second in the time in which

eight vibrations are performed in the lower :

Unison
]-.

Second g.

Minor Third ... ... ... .

Major Third |.

Fourth \.

Fifth for 2 (f).

Minor Sixth f or a().

Major Sixth f or a($).

Minor Seventh ... ... ... ^ or 2(|).

Major Seventh */.

Octave f.

A very little consideration will show that in order to find the sum
of two intervals we must multiply together the fractions given
above for each interval. Thus a fifth is the sum of a minor third

and a major third. Also, to find the difference between two

intervals we must divide the fraction corresponding to the larger by



SOUND. 188

the fraction corresponding to the smaller. The second method of

writing the fractions corresponding to the minor seventh, the major
and minor sixths, and the fifth, shows that the interval between the

notes so indicated and the octave are respectively a second, a minor

third, a major third, and a fourth.

168. Vibrations of Bods. We shall assume that the extent of

the vibrations is such that Hooke's Law ( 135) is followed. In this

case, since the period of vibration is independent of the extent of

vibration, a musical note of constant pitch will be heard, provided
that the rate of vibration is sufficiently rapid. Two kinds of vibra-

tions have to be considered.

Transverse Vibrations. We see from 51, 63 that the time of

simple harmonic vibration of any material system varies directly as

the square root of the mass to be moved and inversely as the square
root of the stress called into play by a given displacement. It

therefore, in the case under consideration, varies inversely as the

square root of the flexural rigidity. Now both the flexural rigidity

and the mass of a rod are ( 133) proportional to its breadth, and so

the period of transverse vibration is independent of the breadth of
the rod. Again, the mass of the rod is proportional to the length,

while the rigidity varies inversely as the cube of the length. Hence
the period is proportional to the square of the length. Similarly,

it varies inversely as the thickness, since the rigidity is directly pro-

portional to the cube of the thickness.

Hence we conclude that the time of transverse vibration of

similar rectangular rods is in direct proportion to their linear dimen-

sions. And considerations of a like kind enable us at once to

extend this statement to the case of similar rods of any form ;

for the masses of such rods are in proportion to the cubes of their

linear dimensions, while their rigidities vary as the first power
of the dimensions.

Longitudinal Vibrations. If a rod be fixed at one end and
receive a smart blow on the other end in a direction parallel to

its length, a wave of compression will travel along it to the fixed end,

from which, by reflection, it will return to the free end. The rod

will now extend, because of its elasticity, to a length greater than its

normal length, and a wave of rarefaction will travel along it to

the fixed end at which it too will suffer reflection. The free end

is obviously a loop, or place of maximum motion, while the fixed

end is a node. Hence the length of a wave is four times the length
of the rod, and the time occupied by the disturbance in travelling
from end to end of the rod is therefore one-quarter of the periodic
time of longitudinal vibration.
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If the rod be fixed at both ends, the wave-length is equal to twice

the length of the rod, since each end is now a node.

In each case the periodic time is obtained by dividing the length
of the wave by the speed of the disturbance. The speed is given by
equation (7), 160, ~k being in this case the constant called

Young's modulus. From this we see that the period is proportional
to the length of the rod and the square root of the density, and is

inversely proportional to the value of Young's modulus, while it is

independent of the sectional area.

The rod which is fixed at both ends has twice the rate of vibra-

tion of a similar rod fixed at one end only. A rod which is free at

both ends, and has its node at the centre, obviously vibrates at the

same rate as does a like rod with both ends fixed.

169.. A rod which is fixed at one or both ends may have more
than one mode of transverse or longitudinal vibration. In Fig. 80
a represents the fundamental mode of vibration of a rod fixed

at one end, while b and c represent the modes which stand next to

it in order of simplicity. This is the case of a vibrating tuning-fork.
When the fork is feebly excited, the fundamental mode of vibration

is the chief one which occurs
; but, under violent excitation, the

forms 6, c, and other higher forms, are superposed upon it. The
extra node in b is distant from the fixed end two-thirds of the whole

\/

i

c d e

FIG. 80.

length of the rod, since the free part and the looped part must have
a common period of vibration. The length of the free part in b is

therefore one-third of the length of the free part in a, and conse-

quently the period of vibration in the case b is one-ninth of the

fundamental period. A reference to the table of 167 will therefore

show that the note given out by a fork vibrating in the mode b

differs in pitch from the fundamental note by the interval of three

octaves and a second.

In the figure, d, e, and /, show the three simplest modes of trans-

verse vibration of a rod which is fixed at both ends. The interval

between the notes given out by similar rods vibrating as in d and e
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is two octaves, while the interval in the cases indicated by d and f is

the same as between those indicated by a and b.

The modes of longitudinal vibration of rods are precisely.

identical with those of air - columns, which will be discussed

shortly.

170. Vibration of Plates. A plate may be set in vibration by

drawing a bow across its edge. The modes of vibration depend on

the form of the plate, and may be greatly varied by forcing certain

points to lie upon nodal lines which may be done by keeping the

fingers in contact with the desired points.

As in 168, we can without difficulty deduce the result that the

periods of vibration of similar plates (similar, of course, as regards
thickness as well as form) of the same material are in proportion to

their linear dimensions. Also, as in the section referred to, we may
show that the period is inversely as the thickness of a plate of given
form and area. By combining these two results we see that the

periods of vibration of similar plates of the same thickness are pro-

portional to the squares of their linear dimension, that is, to their

areas.

171. Vibrations of Strings. The speed, v, with which a distur-

bance runs along a stretched cord is (^ 73) proportional to the square
root of the tension, T, and is inversely proportional to the square
root of p, the mass per unit length of the string. Hence, if X be the

wave-length, the time of a complete vibration is

where p is the density of the material of the string and s is its area

of cross-section.

The figure below shows the three simplest forms of vibration of a

stretched string which is fixecl at its ends. Any disturbance of the

FIG. 81.

string is propagated with equal speed in both directions along the

string from the point of disturbance, each part being reflected when
it arrives at a fixed end. Hence, ( 53), the string is thrown into
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segments, the wave-length in each case being equal to twice the

length of a loop.
Thus the above equation enables us to assert that the funda-

mental period of vibration of a string
1 is directly jpropor/icmfl/ to

its length, to the square root of its density, and to the square root

of its sectional area, and is inversely proportional to the square
root of its tension.

If a string of length I vibrates n times per second (determined by
means of the syren), the speed of the wave is lln.

The higher vibrations correspond to tones which are respectively

one, one-and-a-half, two, two-and-a-quarter, etc., octaves above the

fundamental tone< It is interesting to compare this result with the

corresponding result in the case of a vibrating rod which is fixed at

both ejids. In the latter case, the transversely propagating force is

the flexural stress
;
in the present case, it is the tension of the cord,

in which flexural stress has no existence.

172. Vibration of Air-Columns. When a condensation reaches

the closed end of a pipe, or tube, containing air through which

sound is travelling, the increase of pressure which takes place can

only be relieved by expansion of the air backwards along the pipe.

Similarly, when a rarefaction reaches the closed end, the consequent
diminution of pressure can only be changed by a flow of the air

contained in the pipe towards that end. In other words, the wave

is simply, reflected at the closed end, the result being that two

sound-waves are travelling simultaneously along the pipe, in opposite

directions, with equal speed. And the state of pressure due to each

is always in the same phase at the closed end of the pipe. But, at

a certain distance from the closed end, an outgoing condensation

meets an incoming rarefaction. Hence, on the assumption that no

energy has been lost in the process of reflection, the pressure has

here its normal value. And this normal condition is maintained

constantly so long as the wave-length of the disturbance is un-

altered, for the two oppositely
-
travelling waves are always in

opposite phases as regards pressure at this place, which is evidently

distant by one-quarter of a wave-length from the closed end of the

pipe.

The conditions of motion of the particles of air are simply

reversed when the wave is reflected, and, consequently, the incident

and the reflected disturbances are in opposite phases as regards

vibration when they are in the same phase as regards pressure or

density. Hence the places of maximum variation of pressure are

places of no vibration, and the places of uniformly normal pressure

are those of maximum vibration. Thus a node occurs at the closed
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end of the pipe, and other nodes appear at equal intervals of half a

wave-length.
It is obvious that a loop, or place of greatest motion, must occur

at the open end of a pipe. For, when a condensation reaches it,

the air is free to expand outwards much more free to do so, in

fact, than to expand inwards and consequently the condensation is

succeeded by a rarefaction which is propagated back through the

pipe. Similarly, an incident rarefaction is filled up by the influx of

the surrounding air, and so a condensation is returned. Thus we
see that there is great vibration at the open end of the pipe, which

therefore corresponds to a loop. [This might otherwise have been

determined by means of the consideration that, in the immediate

neighbourhood of the open end, the air-pressure is uniform and

equal to the normal atmospheric pressure. Consequently the open
end is a place of maximum vibration.]

Stopped and Open Pipes. A pipe which is closed at one em
is called a '

stopped
'

pipe, while one which is open at both ends is

called an '

open
'

pipe.

In a stopped pipe the nodes evidently occur at the same positions

as do the nodes of a transversely-vibrating rod which is fixed at one

end. Thig is indicated in the figures below, in which the vertical

distance between the waved lines at any part of the length of the

pipe may be supposed to indicate the extent of the vibrations at that

part. The first figure shows the fundamental mode of vibration.

The wave-lengths, and consequently the periods of vibration, in all

the possible modes are evidently inversely as the odd numbers 1, 3,

HCX X
FIG. 82.

5, etc.
; and, in the fundamental mode of vibration, the length of

the wave is four times the length of the pipe ;
for a condensation

which leaves the open end has its phase reversed when it again
reaches that end and is reflected. Two reversals are therefore

necessary in order that the original phase may be attained.
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In an open pipe the nodes occur at the same positions as do the

nodes of a transversely-vibrating rod which is not fixed at either

end. The positions are indicated below. The possible periods of

vibration are inversely as the natural numbers 1, 2, 3, etc. The

FIG. 83.

wave-length in the fundamental mode of vibration is twice the

length of the pipe ;
for a condensation passing from one end of the

pipe is reflected from the other end as a rarefaction, and leaves the

original end once more as a condensation. Hence an open organ-

pipe which has the same fundamental tone as a given closed organ-

pipe must be twice as long as the closed one is*.

Speed of Sound. In order to determine very accurately the speed

of sound in any given gas we merely require to sound an organ-

pipe of given length which is filled with that gas. By means of the

syren the number of vibrations which are made per second is found.

And if I be the length of the pipe, while n is the number of vibra-

tions made per second, the speed is 4nl, or %nl, according as the pipe

is closed or open. Under ordinary atmospheric conditions the speed

of sound in air is about 1,120 feet per second.

173. Partial Tones. Resonance. From the results of the last

few sections it is now evident that no note given out by a musical

instrument is, strictly speaking, a pure tone
;
in most cases it very

obviously is not so. Thus the '

tongue
'

of a reed is simply a rod or

strip of metal which is fastened at one end, and is caused to vibrate

by means of a current of air which is rendered intermittent by the

vibrations which it produces in the tongue ; and these air-pulses

produce a note in which occur tones corresponding to the various

forms of vibration which the tongue assumes.

These constituent tones of a note are called the partial-tones ;

and it is usual to distinguish between the fundamental tones (corre-

sponding to the fundamental mode of vibration of the sounding body)
and the higher partial-tones, which are termed the overtones.
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Much (greater force is required to set a body in rapid vibration

than to set it in slow vibration, and consequently the overtones of a

note are feebler than the fundamental tone each overtone, taken

in order of pitch, being weaker than the preceding one. In this

way a note is said to have the same pitch as its fundamental tone.

The unaided ear is able to detect in great measure the various

overtones which are present in a given note
; but, in this analysis,

it may be greatly aided by means of instruments, the action of

which depends upon the principle of resonance, according to which

any sounding body can readily absorb, and give out again of itself>

a sound wliicli is emitted by another sounding body which has a

period of vibration identical ivitli its own.

To understand this principle, we need only refer to a well-known

dynamical analogy : A pendulum of given length has a definite

period of vibration, and oscillations of great magnitude may be

induced in it by the application to the bob of the feeblest impulses,

provided only that these impulses are communicated regularly at

instants the interval between which is equal to the natural period

of oscillation of the pendulum. The effects of all the impulses are

in the same direction, and so the total effect may be very large

although each single effect is excessively small. And, similarly, the

feeble periodic impulses which are communicated through the

medium of the air to a body which is capable of giving out sound

may, by being properly timed, set that body in such a state of

vibration as to give out the sound of itself after the original note

has ceased.

The resonator of v. Helmholtz consists of a hollow brass ball

with two apertures at opposite ends of a diameter. (This is indi-

cated in Fig. 84.) Sound is communicated to the air in the ball

through the large aperture, and the small aperture is applied to the

FIG. 84.

ear. The air inside the ball has a definite fundamental period of

vibration, and therefore that tone (should such exist) which corre-

sponds to this period is very distinctly heard all others being

entirely, or almost entirely, suppressed.
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In many cases it is desirable to intensify the fundamental tone of

a note. The principle of resonance shows that this may be done

by associating with the sounding body a resonating column of air

which has the same fundamental period of vibration. Thus a reed

is fitted at one end of an open pipe of the proper length ;
and a

tuning-fork is attached to a '

sounding-box,' which is simply a closed

pipe of such a length that the contained air-column has the same
fundamental period of vibration as the tuning-fork has. The box

itself is set in vibration by the fork, and so the motion is communi-
cated to the enclosed air. The cavity of a violin acts similarly

as a resonator.

The sounding-board of a pianoforte is thrown into vibration by
the wires which are attached to it, and so increases the mass of air

which is made to vibrate when a note is struck on the instrument.

Thus, by its resonance, it intensifies the sound.

174. Quality. There is between two pure tones of the same

pitch no difference of quality such as that which distinguishes the

same note when played on two different instruments. We therefore

conclude that difference of quality between two notes is due to the

existence of partial-tones.

Experiment shows that this is actually the case, and it indicates

further that the quality of a note depends upon the number of

partial-tones which are present in it ; that, the number being the

same, it depends upon the particular set of tones which go to make

up that number ; and, lastly, that it depends upon the relative

intensities of the partial-tones.

[It is independent of the particular phase in which any one of

the constituent vibrations may be when the phases of the others

are given. Now the nature of the resultant vibration essentially

depends upon this condition ( 52, (1) ), and so the above result

appears somewhat startling. Its truth is due simply to the fact

that the human ear is an instrument which resolves a compound
vibration into its separate constituents, and thus mere alteration of

phase of a constituent has no effect upon the nature of the sound

which is heard.]
As a special example, we may instance the difference of quality

between two notes of the same pitch sounded respectively on a

closed and an open organ-pipe. In a closed pipe the odd partial-

tones alone occur, while in the open pipe both the odd and the even

tones are present.

175. Beats. Consonance and Dissonance. It has already been

pointed out
( 165) that the intensity of the resultant sound due

to two component vibrations of slightly different period varies



SOUN&. Idi

periodically from a minimum to a maximum. These regularly-

occurring maxima constitute beats. One beat occurs in the time

in which one vibration gains a complete period upon the other ;

and, consequently, the number of beats which occur per second is

equal to the difference of the number of vibrations which take place

per second in the two component tones.

When the beats succeed each other with too great rapidity, the

ear becomes unable to distinguish them from one another, but it

still recognises a cKstinct discontinuity in the sound, which produces
a harsh effect known as dissonance.

The number of beats which occur per second when two given

pure tones are sounded depends, of course, upon the absolute, as

well as upon the relative, pitch of these tones. When the tones are

in the neighbourhood of the middle C, maximum dissonance is pro-

duced when they differ in pitch by about half a tone ; and there is

almost no dissonance when the interval is a minor third.

On the other hand, beating may occur between the partial-tones

of two notes, and the result is that there may be considerable dis-

sonance between the two, even although their fundamental tones

differ by more than a minor third. Indeed, from this cause, none
of the intervals below the octave form a perfect concord. Still, it is

only in the cases of the second, and the major and minor sevenths,

that the result is actually classed as a discord. In some cases the

greatest dissonance, as above denned, does not produce the most

disagreeable effect upon the ear.

176. Combination Tones. Dissonance of Pure Tones. When
the rapidity of the beats is sufficiently great, the effect upon the ear

is that of a musical note the pitch of which is the same as that of

a tone in which the number of vibrations per second is equal to the

difference (or sum) of the number of vibrations per second in the

two tones which are producing the beats. Such tones are called

combination tones.

Combination tones of a higher order may be produced between
the first combination tone and either of the primary tones, and
so on.

Beating may occur between a combination tone and a primary, or

between two combination tones. The result is that dissonance may
occur in the case of two pure tones where the interval is greater
than a minor third. Thus, when the interval is a major seventh,
the higher tone will make 450 vibrations per second if the lower

makes 240 per second. The combination tone has therefore 210
vibrations per second, which produces 30 beats per second with the

lower primary.



CHAPTEE XV.

LIGHT : INTENSITY, SPEED, THEORIES.

177. Rectilinear Propagation. Intensity. In a homogeneous
medium, light, in general, moves in straight lines. The fact that

the shadow of an object which is cast on the ground by sunlight is

not defined with mathematical accuracy, but has a more or less

blurred edge, does not disprove the statement. . The indistinctness

of the boundaries of the shadow is due to the finite size of the sun's

disc, the light proceeding from each point of which produces a

separate shadow.

The cases in which 'the above rule is departed from will be

discussed in Chap. XVIII.
The total intensity of a luminous source is measured by the

amount of light which it emits per unit time, and the intensity of

the light at any given point of the medium is measured by the

quantity which falls per unit time upon unit area taken perpen-
dicular to the direction in which the light moves at that point.

And, since light moves out uniformly in all directions from a point -

source in a homogeneous medium, it follows that its intensity varies

inversely as the square of the distance from the source
;
for the

same total quantity is, at different instants, spread over the surfaces

of different concentric spheres, the areas of which vary directly as

the squares of their radii. (We assume, of course, that the medium
is one which does not absorb the light in its passage through it.

If any absorption did occur, the quantities of light passing through
the different concentric spheres could not be equal.)

Instruments used for the purpose of comparing the intensities of

different sources of light are called photometers. The simplest

form of photometer consists of a sheet of paper upon which there

is a grease spot. If the paper be illuminated from behind, the spot

appears bright ;
if it be illuminated from the front, the spot seems

dark ;
if it be illuminated to an equal extent on both sides, the spot

vanishes. Under the latter condition the intensities of the sources

are inversely as the squares of their distances from the spot.
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In another form of the instrument two grease spots are employed,
each being illuminated from behind by one source alone. The
distances of the sources are varied until the two spots appear

equally bright.

178. Speed. In last section we have spoken .of the motion of

light. The use of the term is justified by the fact that a flash of

light is not simultaneously seen by two observers who are situated at

different distances from the source. When the distance between the

two points of observation is not very large a few miles, say the

interval of time which is occupied by the light in passing from one

point to the other is so small that it cannot be measured except by

very special means. But there are two astronomical methods of

determining the speed of light which do not involve the measure-

ment of a small interval of time.

The first of these is due to Homer, who observed that the eclipses of

Jupiter's satellites do not appear to recur at equal intervals of

time, and pointed out that this would be a necessary consequence of

the finite speed of light.

In order to understand more clearly how this may be, we may
take an illustration from the phenomena of sound. If an observer

be situated at a fixed distance from a point at which a gun is fired

off at equal intervals of one minute, he will hear the report at equal
intervals of one minute. But if, between two successive discharges
of the gun, he move nearer to it, he will hear the next report at a

shorter interval of time than one minute
; while, if he move farther

from it, the interval will necessarily be greater than one minute.

(When applied to light ( 204), this principle is usually called

Doppler's principle.) The speed of sound may be determined from
the results of two such observations. Let r be the time which

elapses between two successive discharges, and let t be the interval

noted by the observer between two successive reports when he has

meanwhile increased his distance from the gun by the amount d.

Then, t' being the (unknown) time taken by the sound to pass over

the distance d, we get = r-H'> and therefore the speed of sound is

given by the quotient of d by t - r.

Now the eclipses of Jupiter's satellites occur at instants which
are very accurately calculable from known astronomical data. But
the observed instants at which the eclipses apparently take place as

seen from the earth do not coincide with the calculated instants ;

and the errors at different times of the year are (assuming the finite

speed of light) due to the variation of the distance between Jupiter
and the earth. The greatest difference of apparent errors is the

time which light takes to pass over the greatest difference of dis-

13
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tance. But the greatest difference of distance between Jupiter and

the earth is the diameter of the earth's orbit
;
and so we obtain the

time taken by light to pass over this known distance.

The speed of light as deduced by this method is about 186,000
miles per second.

The other astronomical method is due to Bradley. He observed

that the fixed stars appear to describe small ellipses on the surface

of the heavens in the course of a revolution round the sun, each star

being displaced from the centre of its elliptic path in the direction

of the earth's motion in its orbit, and each to the same amount.

He concluded that this was due to the finiteness of the speed of

light as compared with the speed of the earth in its orbit.

A simple illustration may make this clear. On a still day, rain-

drops fall vertically downwards. But, if one moves forward with

considerable speed, they do not seem to fall vertically ; they

apparently fall in a slanting line, which is inclined forwards from the

vertical in the direction of the observer's motion. And it is evident

that the apparent velocity of the drops is the resultant of their

actual velocity and a velocity equal and opposite to that of the

observer.

The light which comes from a star appears to come in a direction

which depends in the same way upon the velocity of light and the

velocity of the earth in its orbit. This latter velocity and the

maximum angular displacement of a star from its true position

being known, we can calculate the speed of light. The value which

is obtained by this method agrees very closely with that obtained

by Eomer's method.

Fizeau was the first (1849) to determine the speed of light

by direct experiment. He caused a beam of light to pass out

through the gap between two of the teeth of a toothed wheel, the

teeth and gaps of which were all of one size. This beam was

reflected from a mirror, placed at a distance of a few miles from the

wheel, in such a way that it passed back again through the same

gap between the teeth of the wheel. The wheel was then caused to

rotate, and, at a certain rate of rotation, it was found the light

ceased to pass back between the teeth ; the reason being that an

adjacent tooth had moved into the place of the gap in the time that

the light took to travel twice over the distance between the wheel

and the mirror. The rate of rotation of the wheel, and the number

of teeth which it contained, being known, the time which was taken

by the light to pass over the given distance can be readily found.

If N is the number of revolutions which it made per unit of time,

while n is the total number of gaps and teeth in its circumference,
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the speed of light is 2dNn, d being the distance between the wheel

and the mirror.

Fizeau's experiments were repeated some time afterwards by
Cormi with improved apparatus ; and, still more recently, a further

improvement of the same method has been effected by Professor

G. Forbes and Dr. J. Young.
In Foucault's method (recently improved by Michelson), a beam

of light, after passing through a slit, falls on a mirror which can be

made to rotate about an axis parallel to the slit. After reflection

from the mirror, the light passes through a lens, which brings it

to a focus on a fixed mirror. This mirror being so placed as to

exactly reverse the course of the beam, the light once more falls

upon the first mirror, and is reflected from it. If the latter is

rotating, and has turned through a sensible angle in the time

taken by the light to pass twice over the distance between it and
the other, the beam will not pass back through the slit, but will be

deflected from it through a measurable distance. The speed of

light may be found in terms of the two distances just mentioned,

together with the rate of rotation of the revolving mirror and the

distance between it and the slit.

These two experimental methods give values of the speed of light

which agree very closely with the values obtained by the two
astronomical methods.

Foucault's method is so sensitive that it may be used successfully
when the distance between the mirrors is only a few feet, and it

lends itself readily to the determination of the speed of light in

different media, such as glass, water, etc. The speed is found to be

less in dense, than in rare, media.

179. Theories. The transference of light involves motion of

matter ;
for when light is absorbed by any body, increased motion

J*

of the particles of that body is generally produced. Indeed, in the

radiometer ( 153), visible motion of a considerable mass of matter

may follow the absorption of light. Another marked example will

be found in 376.

Hence we see that transference of light implies transference of

energy ; and it is in this sense that we speak of light as a form of

energy.
We are therefore limited to two suppositions regarding the physical

nature of light. It may consist in the actual propagation of

material particles, or corpuscles, from the luminous object ; or, it

may consist in the propagation of wave-motion through a material

medium which fills space,

132
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The former theory is known as the Corpuscular Theory, the

latter as the Wave Theory, or Undulatory Theory, of light.

If the corpuscular theory were true, the mass of a corpuscle must

be excessively small. For vision, according to this theory, is due to

the impact of the corpuscles upon the retina; and the speed of

these corpuscles is so great that, unless their individual mass were

almost vanishingly small, the structure of the eye would be

completely destroyed by the impact. The theory is met by a

number of difficulties at the very outset. Thus it is somewhat

difficult to account for the fact that the corpuscles have the same

speed whatever be the temperature of the object from which they are

projected. Again, the mass of a luminous body must be appreciably

affected by the emission of particles ; but there is no evidence of

any such effect. Still, if we boldly overlook any such preliminary

difficulties, we shall find that the theory enables us to account

readily for many of the phenomena of light, although ultimately it

fails us altogether.

On the wave-theory, vision is due to the communication of the

vibrations of the assumed luminiferous medium (called the ether) to

the nerve-ends of the retina. The molecules of a luminous body are

( 202) in rapid vibratory motion, and this motion is communicated

to the particles of the ether, and is propagated through it from par-

ticle to particle giving rise to a series of waves which travel with the

speed of light. The investigation of 161 has a direct applica-

tion to the present case, and shows that the intensity of light is pro-

portional to the square of the amplitude of vibration of the particles

of the medium, and that the energy of the medium, when light

passes through it, is one-half kinetic, one-half potential. (On the

corpuscular theory the intensity must be proportional to the space -

density of the corpuscles.) We shall find subsequently (Chap. XIX.)
that the direction of vibration in the medium must be perpendicular
to the direction of propagation of the waves.

The wave-length is the distance, measured in the direction of

propagation, from any point to the next point where the motion is

similar. (Compare 157.)

The wave-theory is not without its difficulties many of them,

indeed, are of a most formidable nature. But, as will appear, the

evidence in favour of it is of such an overwhelming nature that we
now practically regard its truth as definitely established. Newton

rejected it because he was unable to explain by it the rectilinear

propagation of light. We now know that the existence of rays
is a necessary consequence of the fundamental principles of the

theory.
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180. Colour. Many different kinds of light are recognised. We
speak of red light, blue light, etc. On the corpuscular theory the

difference must be inherent in the corpuscles. On the wave-theory
the difference is a mere difference of wave-length, or of vibrational

period which is only another way of stating the same thing, since

the speed of propagation of light of all colours has, in free space,

one definite value only.



CHAPTER XVI.

LIGHT : REFLECTION, REFRACTION, DISPERSION.

181. Laws of Reflection. When a ray of light reaches the bound-

ing surface of a homogeneous medium through which it is passing,
it is, in part at least, bent back or reflected, and pursues a different,

though still rectilinear, path.
The reflected and incident rays lie in one plane with, and make

equal angles with, the normal to the surface.

FIG. 85.

Let EBF (Fig. 85) represent a section of the bounding surface by
the plane of the paper, and let BD be the normal to the surface at

the point B whereon the incident ray AB falls. Then, BC being
the reflected ray, the angles i and r, which AB and BC make with

BD, are equal, and AB, BC, and BD all lie in one plane, which is

normal to the reflecting surface. The angles i and r are called,

respectively, the angle of incidence and the angle of refraction.

Many surfaces, such as those of chalk or of rough white paper,

scatter the incident light in all directions. But this is merely a

special case of reflection. At every point of such a surface rays are

reflected in accordance with the above law ; but the whole surface

is practically made up of an excessively great number of very small

planes, which are indiscriminately inclined in all possible ways.
The intensity of the reflected ray depends upon the angle of inci-

dence, being greatest when the angle is large, and having its least
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value when the incidence is perpendicular. It varies (the intensity

of the incident ray being fixed) with the nature and the state of

surface-polish of the reflecting substance, and it depends also upon
the nature of the medium through which the light is travelling.

182. Reflection from Plane Surfaces. If a ray of light be

emitted from a point B (Fig. 86) and reach a point A, after reflection

D

FIG. 86.

from a plane surface, CD, the actual length of the path APB is the

shortest possible consistent with the condition of reflection at the

given surface.

For an eye placed at the point A will see the light in the direction

AP as if it came from a point B', which is situated on the normal

drawn from B to the surface. [This is so since the eye sees an

object by means of a cone of rays : and the angle of the cone is un-

altered by reflection since (Fig. 87) the angles which a^pi and a.2p.2

FIG. 87.

make with the reflecting plane are respectively equal to the angles
which Pid'i and^2a'2 ,

the continuations of the lines bpi and bp.2 ,
make

with that plane. And so the continuations of a^ and a.2p2 meet at

a point &', which is such that bpib' and bp.2b' are both bisected by the

surface
;
and therefore b' and 6 lie on the same normal to the surface,

and are equally distant from it.] And any other path, AP'B, being
equal to AP'B', is greater than APB, which is equal to APB'.
The point B' is called the image of the point B. If B were a body

of finite size, each point of it would give rise to an image ; and the

whole congeries of these point-images constitutes the image of the

body B.
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183. Reflection from Curved Surfaces. Let Q (Fig. 88) be the
section of a spherical mirror by the plane of the paper. Let be
the centre of the sphere, and let a ray, UP, emitted by a luminous

U

FIG. 88.

object at'the point U, be reflected to the point V. We have PVQ =
QPV+ PUQ = 2UPO + PUQ. Therefore PVQ + PUQ = 2(UPO +
PUQ) = 2POQ. When P and Q are nearly coincident this becomes

approximately PQ/PV+PQ/PU = 2PQ/PO or 1/PV+1/PU = 2/PO.
If we denote by u, v, and r, the lengths of the lines PU, PV, and

PO respectively, this gives

This equation enables us to calculate the position of the image V
when the position of the object U is given. If U be situated at

infinity towards the left-hand side of the diagram, V is half-way

between and Q. This point is called the principal focus of the

FIG. 89.

mirror. As U moves in from infinity V moves out to meet it, and

the two points coincide at O, the centre of the sphere. The positions

of U and V are now interchanged, and finally, when U is at the

principal focus, V is at infinity towards the left. Whenever U
comes nearer Q than the distance of a semi-radius, the quantity v

becomes negative, that is, the image passes away (Fig. 89) behind

the mirror, and gradually approaches it from infinity in this direction

until both object and image coincide at Q.
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In all cases V and U are interchangeable, that is to say, V may be

the object and U will then be the image. A slight inspection of the

two diagrams will make this clear.

The image, when on the same side of the mirror as the object is

on, is called a real image ; when on the opposite side, it is called a

virtual image.
It is evident that an object on the convex side of the sphere can

have a virtual image only. In this case the above formula becomes

l_l = 2
f

v u r

which is the modification of the formula necessary to make it apply
to the case of reflection from a convex spherical mirror.

FIG. 90.

The law stated in last section with reference'to a plane mirror

that light takes the shortest possible path between two points con-

sistent with the condition of reflection at the given surface, still holds

in the case of any surface provided that we limit the statement to

other paths which do not finitely differ from the actual path of the

light. The necessity for this limitation will be evident if we consider

FIG. 91.

that light diverging from a focus of a reflecting ellipsoid may take

the longest possible, as well as the shortest possible, path.

Figs. 90 and 91 show positions of real and virtual images : a and

a' are mutually real images ;
b and b f are mutually virtual images ;

b being the image of b' in a convex mirror, while a, a', and b' are



202 A MANUAL OF PHYSICS.

the images of a', a, and 6 in a concave one. When formed by one

reflection, or by an odd number of reflections, a real image is inverted,

but a virtual image is not inverted. The positions of the various

points of the image corresponding to given points of the object are

found by means of the above formulae.

184. Caustics : Focal Lines. Let CBQ (Fig. 92) represent the

section of a spherical mirror by the plane of the paper, and let PC,

FIG. 92.

PB represent two rays which, diverging from the point P, fall upon
the mirror : let also the reflected rays, Cpf and Bp/, intersect in the

point p.
Since the vertical angles at the intersection of Cp and OB (a

radius) are equal, we have

OCp+COB= OBp+CpB, or OCP+COB
This gives COQ - CPO+COB=BOQ -BPO+CpB,
whence CPB+C#B

[The results of last section follow as a particular case of this.]

Let CB be an infinitesimally small arc of constant length, and let

T be the point at which the tangent from P meets the circle CBQ.
CPB always diminishes, and therefore (by the above equation) CpB
constantly increases as C moves from Q towards T. Hence the

length of Cp always diminishes as its inclination to CO increases,

until finally p coincides with T.

The locus of p is called the caustic curve, and is indicated by the

dotted curve in the figure. It touches the circle at the point T and

the line PQ at a point m, the position of which may be found by the

formula of last section.
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If the whole figure be rotated about the line PQ, the circle CBQ
traces out the spherical reflecting surface, and the caustic curve

traces a continuous surface which is called the caustic surface. All

points on this surface are more intensely illuminated by the reflected

light than any point which does not lie upon it, and the cusp (at ra)

is the place of most intense illumination. All rays which are

reflected from the surface pass through the line PQ.
Let us suppose that a small, but finite, circular cone of rays falls

upon the reflecting surface in the neighbourhood of the points B, C.

All rays from points on the small circle, the pole of which is Q, and

which passes through B, intersect PQ in the point /; and all rays
from points on the similar circle through C pass through/'; and so

on. It is evident, therefore, that a plane which is perpendicular to

the axial line of the reflected cone, and which passes through the

point in which the axial line intersects the line PQ, will cut the cone

in an elongated figure-of-eight-shaped area, which may be regarded
as a straight line, and is called the secondary focal line.

Again, a plane drawn perpendicular to the axial line through
the point in which that line touches the caustic surface, cuts this

surface in a circle, and all the reflected rays will pass through the

plane in the immediate neighbourhood of a small, practically

straight, portion of the circle ; so that there is another, nearly

linear, normal section of the reflected cone. This is called the

primary focal line.

The two focal lines are mutually perpendicular.
An approximately circular section exists between the two linear

sections. This is called the circle of least confusion, and is the

place where the reflected light most nearly converges to a point.

185. The law of reflection follows readily from the principles of

the corpuscular theory. Let pq (Fig. 93) represent the path of a

FIG. 93.

corpuscle, and let AB be the surface from which the corpuscle is

reflected. When the corpuscle comes within a certain small distance

from the surface, indicated by the line ab, it experiences the

attraction of the medium which is bounded by the surface AB, and
so is bent from its rectilinear path. The mutual action of the par-
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ticle and the medium may alternate from attraction to repulsion

many times according to an unknown law, but it must ultimately
be a repulsion which (at r) stops the motion of the corpuscle towards

the surface. The mutual forces still acting as before, the particle

must now describe a path rq' precisely similar to rq, until, at q
r

,

being freed from the action of the reflecting medium, it describes a

rectilinear path, q'p', which is inclined to AB at the same angle as

pq is. And, since the action of the medium is everywhere in lines

perpendicular to the surface AB, the particle retains its velocity

parallel to AB unaltered during the process of reflection, and
the lines pq and p'q' are in one plane with the normal to the

surface.

186. The wave-theory also affords a ready explanation of the

phenomena of reflection.

But, before dealing with this point, it is necessary to consider the

explanation, on this theory, of the rectilinear propagation of light.

Newton did not see how to account for it, and so supported the cor-

puscular theory. Huyghens was the first to show that the wave-

theory furnishes a ready explanation of the phenomenon.

FIG. 94.

Let AB (Fig. 94) represent a portion of a spherical wave-front

diverging from the point 0. All points, such as a, 6, c, on this sur-

face become centres of disturbance from which secondary spherical

waves diverge. With radius AA', or BB', equal to the distance

which light will travel in a certain time, t, describe circles from

a, b, c as centres. These circles will all touch another spherical

surface, A'B', concentric with AB. This constitutes the new wave-

front. At all points of this surface secondary wavelets are super-

posed, and so a strong resultant effect may be produced. At no

other points, besides those on A'B', are the effects of the separate

wavelets superposed, and the isolated wavelets are too feeble to pro-

duce light. Hence the rays included in the region AOB diverge

outwards in straight lines.

The above explanation is due to Huyghens, and will suffice for
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our present purpose. But, as Fresnel pointed out, Young's principle

of interference is essential, in addition to the above, in order to

make the demonstration rigorous. See 226.

We shall assume for the sake of simplicity that we are dealing
with a plane wave propagated through the luminiferous medium.
Let ADF (Fig. 95) represent the reflecting surface, and let the given
disturbance have reached the position ABC ;

so that ABC represents

a portion of the plane wave-front, to which the rays (of which three

are indicated in the figure) are everywhere perpendicular, the

medium being assumed to be homogeneous and isotropic.

When the wave reaches the point A, the particles of the ether at

that point are set in vibration and give rise to a spherical wave
which spreads out from A as centre. If, from A, we draw a sphere
with radius AP = CF, we get the position of this spherical wave
when the disturbance originally at C has reached the reflecting sur-

face. Similarly, DE being parallel to ABC, if we draw from D as

centre a sphere with radius DQ =EF we get the corresponding posi-

tion of the spherical wave which is originated at the point D when
the wave-front reaches it. All such spheres touch a plane surface,

PQF, which is, therefore, the wave-front after reflection. Thus we
see that a plane wave remains a plane wave after reflection.

But, further, AP = CF, and AF is common to the two right-angled

triangles ACF and APF. Therefore the angles CAF and PFA are

equal, that is, the reflected wave-front has the same angle of inclina-

tion to the reflecting surface as the incident wave-front has. And
this since the rays are perpendicular to the wave-fronts gives the

known law of reflection.

187. Laws of Refraction. A ray of light, on passing from one

medium into another of different density, is in general bent from its

original direction, and is said to be refracted. The angle which
the refracted ray makes with the normal is called the angle of

refraction.

The refracted and incident rays lie in one plane with the
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normal to the surface and the sine of the angle of incidence

bears a constant ratio to the sine of the angle of refraction,

The angles of incidence and refraction (Fig. 96) being denoted

by the letters i and r respectively, the above law may be written

The constant, /i,
is called the index of refraction. When the

refraction takes place from a less dense into a more dense medium,

H is generally greater than unity ; and, conversely, /*
is usually less

than unity when the light passes from a more dense into a less

dense medium.

FIG. 96. FIG. 97.

The intensity of the refracted ray depends upon the angle of inci-

dence. It is greatest when the incident ray is perpendicular to the

refracting surface, and diminishes as the angle increases. In the

case of refraction into a denser medium, minimum intensity is

attained at grazing incidence : in the case of refraction into a rarer

medium, the minimum is reached when the angle of incidence is

less than 90 ; and at higher angles of incidence no refraction occurs.

188. Refraction through a Plane Surface. Let a ray, aO (Fig.

97) fall upon the plane surface, AB, of a medium, the refractive

index of which is
ju

that of the first medium being taken as unity.

If we assume p to be greater than unity, the path of the ray in the

second medium will be a line 06, such that sin aOc = p sin bQd, CD
being perpendicular to AB at the point of incidence 0. Also light

travelling in the direction 60 will emerge into the first medium in

the direction Oa, which is such that

sin 60d= sin aOc.
/'

Now suppose ^00 = 90. The light will enter the second medium
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in a direction Oc, such that sin cOD=//; and, conversely, light

travelling in the direction cO will emerge into the first medium
so as just to graze along the surface. Light passing in the direction

eO, where eOD > cOD, cannot enter the first medium at all, but will

suffer total reflection in the direction oe', in accordance with the

ordinary law. (This proves the concluding remark of last section.)

The ray eo is said to suffer Total Reflection, and the limiting angle

cOT> is called the Critical Angle.

The refractive index of water, relatively to that of air, is about

4/3 for ordinary yellow light. Hence an eye placed underneath the

surface of water will see objects above the surface by means of rays

which are crowded into a cone, the sine of the semi-vertical angle of

which is 3/4.

The angle of deviation of a, ray from its original direction by a

single refraction is i-r,i and r being respectively the angles of

incidence and refraction.

FIG. 98.

From (Fig. 98) as centre describe two circles APB and CQD,
with radii equal to unity and // respectively. Let COQ = r, and draw

QPN parallel to CO. Then ON = sin OPN =// sin OQN =/* sin r, and

so OPN = i.

Now OP and OQ are fixed in length, and PQ is always parallel

to OC
;
so that OPQ and OQP become more nearly right angles,

and PQ becomes greater at an increasing rate as i increases up to

90. Hence i - r increases faster and faster as either i or r increase

uniformly.
Next suppose that PQ moves out from OC through an infinitesimal

distance into a position P'Q', and let OQ' be then turned back to

coincide with OQ. P' will then take a position p such that AJO is
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greater than AP. By this process i-r has increased by the

amount Pp, and PQO = r has increased by the amount >QP =

Pp cos t/PQ. Hence r (i r) 2r~i has increased by the angle

Pp (cos -i/PQ 1). This vanishes when cos i= PQ. But cos i=NP,
and hence the condition is NP= PQ. This implies AC < OA, that is,

fi
< 2. Again, the increase of 2r -i is positive or negative according

as NP > or < PQ. Hence it is always positive until the limiting

angle is reached, after which PQ still increases, while NP diminishes,

so that 2r-i diminishes continuously. In other words the con-

dition NP=PO or 2 cos i= p cos r (since NQ = /* cos r) indicates a

maximum value of 2r i.

This condition, combined with sin i=n sin r, gives

3 sin2 i= 4 - ^
2

.

Similarly, the angle 3r - i increases under the same conditions

by the amount Pp (2 cos i/PQ -
1) ; and the condition for a stationary-

value is 2NP = PQ or 3 cos i=(J> cos r, which implies /* < 3. As in

the former case the condition indicates a maximum. From this

along with sin i ^ sin r we get

8 sin2 i 9 -
/*
2

.

These results are of importance in the discussion of the primary
and secondary rainbows.

FIG. 99.

189. Focal Lines: Caustics. Let OPo' (Fig. 99) represent an

axial section of an infinitesimal circular cone of rays diverging

from a point P placed in a dense medium. The section, by the

plane of the paper, of the cone a'pa, by which the object P is

actually seen by an eye situated in the rare medium, has its vertex

at a different point, p, which is nearer the surface than P is.

Let i'
t r', and i, r, represent respectively the angles of incidence

and refraction (regarded from the rarer medium) of the rays a'o'P
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and aoP respectively. The angle of the cone, whose vertex is at P.

is r' -r, and the angle of that whose vertex is at^> is i'i.

To find the relation between these angles we may write the

equation sin i' =
p,

sin r' in the form sin (i' i+i} = n sin (r' r-\-r).

This gives sin (i'i) cos i-f-cos (i'i) smi= p [sin (r'r) cos r +
cos (r' r) sin r] ,

and so, remembering that i' -i and r'r are

vanishingly small, we get

i' i __ cos 'r_tan i

r' r cos i tan r

But i' -i=0o r cos i[0p, and r'-r= Oo' cos r/OP. Hence

OP _ sin i
.
cos2 r.

Op
~~

sin r cos2 *

Now let Op be prolonged to meet PQ (the line drawn through P

perpendicular to the surface) mp f

,
and we get Op' sin z= OP sin r;

so that Op = 0p' *

cos- r

This formula, which will be of use when we deal with spherica

lenses ( 194), shows at once (cf. 184) that no more than two

finitely distinct rays in any given vertical plane section can inter-

sect in one point, p ; but, when the cone is very small, all the rays
in a given plane section pass approximately through one point.

We have next to consider the lateral divergence of the beam of

light. This is obviously unaltered by refraction
; for, after refraction,

a ray remains in the same plane, passing through the normal, which

contained it before refraction. Hence, laterally, the rays diverge
from points on PQ. And thus, since the cone has some lateral

thickness at the pointy, we see that the emergent light appears to

pass, at >, approximately through a small line, the length of which

is perpendicular to PQ.
This is the primary focal line.

The secondary focal line is the intersection of the refracted cone

with a plane drawn perpendicular to its axial line and passing

through the point in which the axial line cuts the line PQ.
At perpendicular incidence, Op = Op' OP//z ; so that the light

appears to diverge from a point which is closer to the surface than

the actual point in the ratio of 1 to fi. For example, the depth of

water appears to be only three-fourths of its true depth.
The existence of the primary focal line implies the existence of

a caustic surface. We may map out (Fig. 100) successive points,

14
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jPi> A> G*CM corresponding to successive positions of the point o, by
means of the last equation above together with the condition

sin i^n sin r. We thus obtain the caustic curve popiP*o
f

, which

FIG. 100.

touches QP at p$ and Qo' at o
r
. The line Po' indicates the limiting

position beyond which total reflection takes place. If the caustic

curve be rotated around the line PQ, the caustic surface will be

described.

190. Refraction through Parallel Layers. A ray of light, which

is bent out of its original direction on entering a refracting layer

(Fig. 101) with parallel plane sides, is, on re-entering the original

\

FIG. 101.

medium on the far side of the layer, bent back again into its first

direction. This follows at once from the symmetry of the arrange-

ment.

If an object is looked at perpendicularly through such a layer of

thickness, t, its distance from the eye is apparently diminished by
the amount

(/* !)//. For, if d be the distance of the object from the

layer, an eye situated in the layer would see it as if it were at a

distance dp from the layer. Therefore, when the eye is just at the

far side of the layer, but still inside, the apparent distance of the

object is t-\-djji. And, if the eye be now just outside the layer, this
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distance is decreased in the ratio of p to unity, which proves the

statement.

If a beam of light passes through three such layers the total

deviation of the beam from its original direction is the same as if

FIG. 102.

the intermediate layer were absent. For, /tx
and

ju2 being the refrac-

tive indices of the first and second media with reference to the

second and third respectively we have (see Fig. 102)

sm ?!_ sm
sin ro sin

sin r, sm
sin r sin r.

sm ^
3

sin r2

But, since
/<.,

is the index of the second medium expressed in terms
of that of the third as the unit, while

ju x
is the index of the first

expressed in terms of that of the second as the unit, ^3 is the

index of the first medium expressed in terms of that of the third.

It follows that no effect is produced by any number of intermediate

layers. For this reason it is possible to calculate the refraction error

in the apparent altitude of stars, etc.

191. Mirage. When a beam of light passes iion-perpendicularly

through a medium composed of parallel layers of continuously

B

FIG. 103.

varying density, the direction of the beam constantly alters. Let
us suppose that, over the surface of the ground AB (Fig. 103) there

142
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exists a stratum of air the density of which continually increases

with its distance from the surface. We may suppose also that,

above the plane ab, the density remains uniform. An object, nm,
will be seen by an eye situated at p by means of rays which enter

the non-homogeneous medium and are then bent upwards until, re-

entering the uniform medium, they pass straight to p. The object

appears to be in the direction of m'n', and is obviously inverted

since the rays from the upper and lower extremities cross each other

before reaching the eye. But the object may also be seen directly

through the medium above ab, and so the impression of an object

with an inverted reflection is produced. This is the case of the

ordinary mirage of the desert.

In Fig. 104, AB again represents the surface of the ground, and

FIG. 104.

the density of the air is suppose to decrease from below upwards.

A direct mirage is thus produced.

In Fig. 105 the air is supposed to be of uniform density between

AB and ab, but is supposed to diminish continuously in density

a

FIG. 105.

above ab. This condition obviously gives rise to an inverted

image.
192. Prisms. When the two plane bounding surfaces of a

medium are not parallel the emergent ray is no longer parallel to

the incident ray. Such an arrangement constitutes a prism.

Let ABC (Fig. 106) represent the section, by the plane of the

paper, of a prism of some dense medium, such as glass. Let the

edge, B, of the prism be perpendicular to the plane of the paper, and

let abed be a ray which makes an angle i with the (inward) normal
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to the face AB and an angle i' with the (outward) normal to the face

BC. Let r and r' be the corresponding angles of refraction.

The deviation of the ray from its original direction by the first

refraction is i r; and at the second surface this deviation is

FIG. 106.

farther increased by the amount i' -r r
. But ( 188) the alteration

of i-r, consequent on a given alteration of i, is greater and greater

the larger i or r is ; and any increase or decrease of r involves an

equal decrease or increase of r'. Hence, if i be greater than i', a

given diminution of i produces a diminution of i r, which is greater

than the simultaneous increase of i' r'. Hence the ray has mini-

mum deviation when i=i', that is, when the ray passes through

the prism so as to make B6 = Be.

When the angle of the prism is less than sin -1
1//* the deviation

i' - r' may be in the opposite direction to the deviation i r, but it

is easy to see that the above result is true in all cases.

The total deviation, d, is, in the standard case above, i'+i-

(r'-fr), which, in the minimum position, becomes 2(i r)=%i-a,

being the angle of the prism. If /* be the refractive index of the

substance of which the prism is composed, this gives

sin

sin /2

This affords a ready means of determining the refractive index of

the substance of the prism ; and, if the prism be hollow and have its

sides made of glass plates of uniform thickness, the refractive index

of any liquid placed in the hollow may be found.

193. Refraction through Spherical Surfaces : Lenses. Let

QA.B (Fig. 107) represent a part of a spherical surface the centre of
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which is at O ; and let the refractive index of the substance on the

convex side of the surface be ju. Let rays PA, PB, diverging from

P, meet the surface in the points A and B respectively. Suppose

that Ap, Bp are the backward prolongations of the refracted rays

/i being assumed to be greater than unity. Join PO and continue

the line to meet the surface in Q.
If we denote the angles PAO, PBO, pA.0, pRO, BPA, BpA, BOA,

by the letters i', i, rf

, r, $, $, 9, respectively, the diagram at once

gives i'i= (j>-0, and r ' - r= ty B. Hence, when the angles are so

small that we may write sin i=i, cos i 1, etc., we have ( 188)
i' -i=p (r' r), and therefore

Gu-1) 0=^-0 (1).

When A coincides with Q and AB is very small this becomes

?-l = /* _ 1
.

OQ jpQ PQ
When /i=-l, this gives the first formula of 183.

Now let the rays (Fig. 108), apparently diverging from the point

p, fall upon the second spherical surface of the dense medium at the

O'

FIG. 108.

points A', B'. Let 0' be the centre of the new surface, and let O'p
meet it at the point Q'. Denote the angles p'B'O', _pA'O', p'B'O',
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yA'O' A'/B', A'O'B', by the letters i
f

, i, r', r, ij/', 6', respectively.

Since A'^B' = ;//,
the figure -gives i'-i= ^ 9' and r 1 -r=V -0'.

Hence, when A'B' is very small (i// 0')
=

/*(4
/ ""^') or

Oi-l)0' = ,4-*'........ (2)

[Of course (2) might have been deduced from (1) by the substitution

of 1/u for
ft.]

From (1) and (2) we get

(/-I) (0-00 = *'-* ...... (8)

When A (Fig. 107) coincides with Q, Ar

(Fig. 108) coincides with

Q' ; and so, when the angles are sufficiently small, we may write (3)

in the form

r and s being the radii of the two spherical surfaces, while v and u

are respectively the distances of p' from Q', and of P from Q.

The quantity on the left-hand side of equation (4) is constant.

We may therefore write (4) in the form

UI-I ........... (5)
/ v u

where / is a constant, called the principal focal distance. When
u is infinite, that is, when the incident rays are parallel, we get

f=v; in other words, / is the distance from Q' of the point from

which originally parallel rays seem to diverge after passing through
the medium. This point is called the principal focus. P and p' are

called conjugate foci.

A portion of a medium bounded by two spherical surfaces is

termed a lens.

In the case just discussed we have taken s>r, and have assumed

that the concave sides of the spherical surfaces are directed towards

P. All lines drawn in the direction PQ are regarded as positive.

Lines drawn in the direction of QP are therefore negative.

Equation (4) applies to all lenses. The quantity /is negative (1),

when s is positive but less than r, (2) when r is infinite and * is

positive, (3) when r is negative and s is positive.

In such cases the principal focus and the source of the parallel

rays are on opposite sides of the lens, which is necessarily thickest

at the middle (Fig. 109).

But / is positive (1) when r and s are both positive and s > r,

(2) when s is infinite and r is positive, (3) when s is negative and r

is positive.
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In the three latter cases the principal focus and the source of the

parallel rays are on the same side of the lens, which is now thinnest

(Fig. 110) at the middle. Such a lens diminishes the convergence
or increases the divergence of the incident rays, while a lens of the

FIG. 109.

previous type diminishes the divergence or increases the convergence
of the incident rays. Equation (3) makes this evident at once.

The formula (4) is true of a given small cone of rays which falls

perpendicularly upon the lens at its central part, and it shows that,

FIG. 110.

after passing through the lens, all such rays appear to diverge from,
or are converged to, another perfectly definite point. We shall see

in next section that the same result holds in the case of a small

obliquely-incident pencil of rays.

194. Lenses : Oblique Refraction. Let DCBA (Fig. Ill) repre-

sent a ray, which, entering the lens CBQQ' at C, emerges at B and

cuts the line OQ in A. (The letters O, 0', Q, Q' have the same

meanings as in last section.) Let the ray be such that OB and O'C

are parallel. Since BC makes equal angles with OB and O'C, it

follows that AB and CD make equal angles with them. Therefore

AB and CD are parallel.

Let CB be continue^ to meet OQ in K. We have OB/OB =

O'B/O'C, and so the lengths of OE and O'K bear a constant ratio to

each other. Therefore K is a fixed point, and is called the centre of
the lens.

Thus no ray which passes through the centre of the lens is

deviated from its original direction by its passage through the lens.
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It is easy to find an expression for the distance BQ in terms of

the thickness of the lens and its radii of curvature. When the lens

is very thin K practically coincides with either Q or Q'.

We shall hereafter assume that we are dealing with thin lenses

only.

The final equation of 189 may be written in the form opjop'
=

I*? (1 sin2 i}/(i^~ sin2
i), or, approximately, ^ (1 i2

)/(/*
2

ft). This

shows that, when i is so small that its square may be neglected, p
coincides with p'. And it is easy to prove that, when the reflecting

FIG. 111.

surface is spherical instead of plane, p and p 1
still practically coin-

cide when i2 is small. (The formulae of 193 enable us to calculate

the positions of the focal lines.) Hence we conclude that a given,

sufficiently small, pencil of rays will, after refraction through a thin

lens, be brought to a focus at, or appear to diverge from, one
definite point ; and this point must be situated on the line drawn
from the vertex of the incident pencil through the centre of the

lens.

We are now in a position to investigate the production of images

by means of lenses.

195. Formation of Images by Lenses. Let AB (Fig. 112) be a

thin lens, of which C is the centre, and CF is the principal focal

length. If MN be an object which is situated at a distance from
the lens greater than CF, rays diverging from N will be brought to

a focus at a point n such that l/CF= l/CN + l/Cra.

Similarly 1/CF= I/CM+ I/Cm, and so on.

Thus an inverted real image of MN is formed at mn, and the rays

diverging from that image may be examined by an eye which is
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situated at the distance of about ten inches from it that being the

usual distance for most distinct vision.

FIG. 112.

On the other hand, if MN be slightly nearer (Fig. 113) to the lens

than the principal focus, the lens is only able to diminish the diver-

gence of the incident rays, and the erect and virtual image of MN

FIG. 113.

is situated at a greater distance from the image than the object is.

For the purpose of correct vision as regards an eye placed close

behind the lens, this distance must be about ten inches.

The magnifying power of the lens is the ratio of inn to MN, and

is therefore approximately equal to 10//, where f is the principal

focal length expressed in inches.

The object-glass of the ordinary astronomical telescope acts in the

manner first described above. The practically parallel rays from a

very distant object, MN (Fig. 114) are converged to the principal

focus of the object-glass, and so an inverted image, mn, is formed.

The eye-glass is placed at a distance from mn which is slightly less
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than its principal focal length, and so forms a magnified image,
m'n r

t still inverted, at a distance of ten inches from the eye.

N

The magnifying power of the telescope is the ratio of the angle
which mm, subtends at the eye-glass to the angle which it subtends

at the object-glass. It is, therefore, approximately equal to the

ratio of the focal length of the object-glass to that of the eye-glass.

The arrangement of lenses in the compound microscope is essen-

tially the same. The object is placed at a distance from the object-

glass which is slightly greater than its principal focal length, and

so a magnified inverted image is formed, and is further magnified

by the eye-glass.

196. Dispersion : Aberration. In all the preceding sections it

was assumed that we were dealing with light of one definite kind or

colour alone. But rays of light of different colours are differently

refracted by any given substance ; and we must, therefore, with this

in view, reconsider briefly the action of prisms and lenses.

Let a ray of white light, ab (Fig. 115), fall upon a prism, ABC,
in a direction perpendicular to its edge. The single ray of white

FIG. 115.

light will, on entering the prism, be broken up into a series of

coloured rays, fee, be', etc. The red rays are least deviated, and the
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blue or violet rays are most deviated, from their original direction.

The rays intermediate between the red and the violet are usually

broadly characterised in order as orange, yellow, green, blue, and

indigo.

Let be and be' represent respectively a violet, and a red, ray ; and

let these lines meet the perpendicular from a on AB in the points r

and v. So long as the square of the angle of incidence is negligable,

an eye placed in the substance of the prism will see, no white point
a but, a coloured line, rv ,

red at the end nearest to, and violet at the

end farthest from, the prism.
After emergence from the face BC, the two rays considered will

take the directions cd, c'd'. Drop the perpendiculars rr' and vv' on

BC, and let dc meet vv' at the point v', while d'c' meets rr' at the

point rf
. The angles which the emergent rays make with BC being

small (which necessitates ABC being small), we see that an eye

placed in the same medium as the point a, but on the opposite side

of the prism from it, perceives, instead of a, a coloured line, r'v'.

Let us suppose now that a represents the section, by the plane of

the paper, of a luminous white line, which is parallel to the edge of

the prism. In this case r'v' represents a coloured band, which is

called a spectrum. This separation of the constituents of white

light by refraction is termed dispersion. The measure of the dis-

persion produced by any given substance is the difference of the

refractive indices of that substance for the extreme rays of the

visible spectrum.
Now let P (Fig. 116) be a luminous white point from which

diverging rays fall upon a lens AB. The refractive index of the

substance of the lens for violet rays being greater than its refractive

index for red rays, the violet rays will be brought to a focus at a

FIG. 116.

point, P) which is nearer the lens than the point p', to which the red

rays converge. The light in the regions BpA and B'jp'A' is nearly

colourless, but, on the whole, it is somewhat violet in the former and

reddish in the latter. In the region immediately outside BjjA the light

is red, while, in the region immediately outside B'p'A', it is violet.
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A lens is said to produce aberration when it fails to bring all rays

diverging from one point to a focus at another point. The aberra-

tion is called chromatic aberration when it is due to dispersion : it

is called spherical aberration when it is due to the spherical form

of the faces of the lens. The former depends on the first power of

i, the angle of incidence, while the latter ( 194) depends on i2 . So

long as the lens is sufficiently thin, and the incidence is sufficiently

direct, both are negligable.

197. Dispersion : Achromatism. It is possible to get nearly rid

of dispersion while refraction remains, and thus we can obtain a

practically achromatic lens. This result can be obtained, since

some highly refracting substances produce comparatively small dis-

persion, while some substances of low refracting power produce

comparatively large dispersion comparatively, that is, to their

refraction.

Let us suppose that two prisms, of equal angles, but of different

substances, produce dispersions d, d
9j respectively, and let their

refractive indices for the extreme red light of the spectrum be plt /*3

respectively. If now we alter the angle of the prism, the dispersion

of which is dv in the ratio d.2/d^ and form a compound prism of the

two with their edges turned in opposite directions, we shall have a

prism which will not produce dispersion of the red and violet rays ;

but refraction will still take place unless dj^^de,/^.
Similarly, we may construct a compound lens for the purpose of

avoiding chromatic aberration.

By no pair of substances yet found, however, can we produce

complete achromatism. If a lens is completely achromatic for two

definite kinds of light it will not be so for any other pair. For if

given dispersion is produced by one prism, between a series of pairs
of definite kinds of light, equal dispersion will not be produced, by
any other prism, between more than one of these pairs. This is

known as the Irrationality of Dispersion.

Compound lenses, made up of three constituent lenses, can

produce closer approximation to achromatism than can a compound
lens made up of only two.

193. Rainbows : Halos. We are now in a position to discuss the

formation of rainbows and halos.

Let AB (Fig. 117) represent a ray of sunlight which, falling on a

drop of water at B, is refracted to C. After reflection at C the ray

emerges at D. The whole figure is symmetrical about the line

drawn from C through the centre of the drop. The semi-angle
between AB and ED is obviously 2r - i, i and r being respectively
the angles of incidence and refraction.
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Now
( 188) this is a maximum when 3_sin

2
'i= 4-/*

2
; and, in the

case of water and yellow light, /*
= 1-336.' This makes the semi-

angle, corresponding to the maximum value of 2r-t, equal to

21 1' nearly. But the existence of a maximum means that the

rays are crowded closely together in the immediate neighbourhood
of the maximum angle, and so an eye situated at E will see com-

paratively strong yellow light in the direction ED.
Now consider AB to be a ray of white light. This becomes dis-

persed on refraction, and a blue ray (say) being more refracted, will

suffer reflection at a point C' such that the angle %r i is smaller

than before. Hence the maximum value of the angle 2r - i becomes
smaller as /* increases.

From E draw EP parallel to AB, and let a very large number of

drops be situated symmetrically around EP in the direction of the

sun's rays. (Of course, in the figure, the size of the drop is

immensely exaggerated relatively to other magnitudes.) The eye
at E will see a circle of yellow light, of radius4a; the centre of

which is situated on the line EP. Inside this a circle of blue light

will be seen, and, outside it, a red circle will appear the colours of

the spectrum succeeding each other, in order of decreasing refrangi-

bility, from within outwards. This constitutes the explanation, by
geometrical optics, of the primary rainbow. In the actual bow the

colours are, of course, impure. For the light proceeding from each

point of the sun's disc gives rise to a separate bow, and the bow
which we see results from the superposition of all these distinct bows.

If the ray AB (Fig. 118) suffers two reflections in the interior of

the drop, the emergent ray EP makes an angle with it which is
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double of 7T/2 (3r i). But, 188, 3r i reaches a maximum when
8 sin- i = 9- /A Hence the angle BPE is a minimum when i has

the value indicated by this formula. For yellow light, falling on a

drop of water, the vertical angle is about 50 58'.

A ray of higher refrangibility will be reflected at points C f

, D',

such that the perpendicular from on C'D' will intersect AB at an

FIG. 118.

angle which is larger than BPO. Hence the minimum value of the

angle 7r/2
-

(3r
-

i) increases as // increases. And so, in the secondary

rainbow, which is due to two such internal reflections, the colours

succeed each other, in order of increasing refrangibility, from within

outwards.

Also, since the primary bow corresponds to a maximum value of

the angle which the emergent ray makes with the incident ray,

while the secondary bow corresponds to a minimum value of this

angle, we see that the space between the bows is devoid of light due

to rays which have suffered one or two reflections inside the drops,

while there is some such illumination in the region inside the first

bow and also in that outside the second.

The bows which are due to more than two internal reflections are

too feeble to be visible.

Halos are due to the refraction of light through ice-crystals.

The rays are most densely crowded in the directions of minimum
deviation. The red rays are least deviated, and therefore appear

always on the interior portions of halos. The size of a halo depends

upon the effective angle of the ice-crystal to refraction through
which it is due. Parhelia and paraselenes are simply exceptionally

bright portions of halos.

Colourless halos are produced by the reflection of light from the

plane surfaces of the crystals.

199. The general phenomena of reflection and refraction receive

a ready explanation whether on the corpuscular or on the undulatory

theory of light.

Let AB (Fig. 119) represent the bounding surface between two

refracting media. Let p q r s t represent the path of a corpuscle.
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During the rectilinear motion from p to q the corpuscle experiences
no resultant attraction in any direction. When it reaches the

distance from AB indicated by the line ab, the greater (say)

attraction of the medium on the other side of AB preponderates
and the path becomes concave towards the surface of separation.
This continues until a point, s, at which the resultant attraction

again becomes zero, is reached. The rest of the path st is therefore

straight, and is inclined at a less angle to the normal to the surface

AB than is the part pq.

a

A

a

FIG. 119.

Even if the refracting surface is not actually plane, it is yet prac-

tically plane, in all cases of finite curvature, so far as the present

reasoning is concerned, for the portion qs of the path of the corpuscle

is excessively small.

Now (cf. 42) the square of the resolved part of the speed of the

corpuscle along the normal increases by a constant amount in pass-

ing from ab to a'b', while the resolved part along the surface remains

constant, and hence the total speed, v f

,
of the particle in the second

medium bears a constant ratio to its total speed, v, in the first.

Let, as usual, i and r denote respectively the angles which pq and

st make with the normal. We have v sin i= v' sin r, which is

identical with sin i~p sin ?*, where /* is equal to v'/v. But this is

the known law of refraction. A

It follows necessarily that the speed of a corpuscle is greater in a

dense medium than in a rare one.

200. Let ABC (Fig. 120) represent a plane wave-front, which

travelling through the air in the direction indicated by the arrows,
reaches the surface, ADF, of a refracting medium. From A, as

centre, describe a sphere of radius, AF, such that light will travel

over the distance AF in the refracting medium in the same time

that it will describe the distance CF in the air. Similarly, from D
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describe a sphere of radius, DQ, such that DQ bears to EF (DE is

parallel to ABC) the same ratio as the speed of light in the refracting

medium bears to its speed in air. It is obvious from the construction

that all such spheres touch a plane, PQF, which is therefore the

wave-front after refraction.

FIG. 120.

Let us denote the speeds of light in the medium, and in air,

respectively, by the letters v', v. Let i and r be respectively the

angles of incidence and refraction. Then CAF= i, AFP = r, and

CF=AF shit, AP=AF sin r. But CF/AP = v/v
r
. Hence sin i=

vjv' . sin r= ^ sin r, if \i
=

v\v* ;
and so the known law of refraction

is a consequence of the wave-theory of light.

Observe that, in a dense medium in which /* is larger than unity,

v' is necessarily less than v. Hence, on this theory, the speed of

light must be less in a dense medium than it is in a rare one. This

conclusion is in direct opposition to that derived from the principles

of the corpuscular theory ; and so we are furnished with a crucial

test between the two theories. The result of experiment is
( 178)

entirely in favour of the undulatory theory. Consequently, we shall

hereafter deal with the results of this theory alone.

It is easy to deduce from the above theory the fact that the time

taken by light to travel from a given point in one medium to a given

A
.

FIG. 12L

point in another is a minimum. Let PAQ (Fig. 121) be the actual

path of light proceeding from P to Q, and let PBQ be a very near

path. Draw AC and BD perpendicular to PB and AQ respectively*

15
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Then CB/AD = sin i/sin r= v/v'. That is, CB/v = AD/^', or AD and

CB are described in equal times. Therefore, and since PA= PC,

DQ = BQ, the paths PAQ and PBQ are described in equal times.

But, as B moves away uniformly from A, QA QB increases at a

diminishing rate, while PB PA increases at an increasing rate.

Hence the time of description of PAQ is a minimum.
This law of least time was first given by Fermat. It is true in

the case of reflection also (see 182). The corpuscular theory gives

PAv+AQ-y'= a minimum. This sum is termed the action.

201. Hamilton's Characteristic Function. In the earlier part
of the present century Sir W. R. Hamilton introduced a general
method by which all optical problems may be solved by a single

process. The following extracts from an ' Account of a Theory of

Systems of Kays,' written by Hamilton himself, and published in

his Life will indicate the nature of his work.
' A Bay in optics is to be considered here as a straight or bent or

curved line, along which light is propagated, and a System of Rays
as a collection or aggregate of such lines, connected by some common

bond, some similarity of origin or production, in short, some optical

unity. Thus the rays which diverge from a luminous point compose
one optical system, and, after they have been reflected at a mirror,

they compose another. To investigate the geometrical relations

of the rays of a system of which we know (as in these simple cases)

the optical origin and history, to inquire how they are disposed

among themselves, how they diverge or converge, or are parallel,

what surfaces or curves they touch or cut, and at what angles of

section, how they can be combined in partial pencils, and how each

ray in particular can be determined and distinguished from every

other, is to study that System of Rays. And to generalize this

study of one system so as to become able to pass, without change of

plan, to the study o other systems, to assign general rules and a

general method whereby these separate optical arrangements may
be connected and harmonized together is to form a Theory of

Systems of Rays. Finally, to do this in such a manner as to make
available the powers of the modern mathesis, replacing figures by
functions and diagrams by formulae, is to construct an Algebraical

Theory of such Systems, or an Application of Algebra to

Optics
' The method employed in that treatise (Malus's Traite

d'Optique) may be thus described: The direction of a straight

ray of any final optical system being considered as dependent on the

position of some assigned point upon that ray, according to some

law which characterizes the particular system and distinguishes it
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from others ; this law may be algebraically expressed by assigning
three expressions for the three co-ordinates of some other point of

the ray, as functions of the three co-ordinates of the point proposed.
Malus accordingly introduces general symbols denoting three such

functions (or, at least, three functions equivalent to these), and pro-

ceeds to draw several important general conclusions, by very com-

plicated but yet symmetrical calculations, many of which conclusions,

along with many others, were also obtained afterwards by myself,

when, by a method nearly similar, without knowing what Malus
had done, I began my own attempts to apply algebra to optics.

But my researches soon conducted me to substitute, for this method
of Malus, a very different, and (as I conceive I have proved) a much
more appropriate one, for the study of optical systems ; by which,
instead of employing the three functions above mentioned, or at

least their two ratios, it becomes sufficient to employ one function,
which I call characteristic or principal. And thus, whereas he

made his deductions by setting out with the two equations of a ray,

I, on the other hand, establish and employ the one equation of a

system.
'The function which I have introduced for this purpose, and

made the basis of my method of deduction in mathematical optics,

had, in another connection, presented itself to former writers as

expressing the result of a very high and extensive induction in that

science. This known result is usually called the law of least action,

but sometimes also the principle of least time, and includes all that

has hitherto been discovered respecting the rules which determine

the forms and positions of the lines along which light is propagated,
and the changes of direction of those lines produced by reflection or

refraction, ordinary or extraordinary. A certain quantity which in

one physical theory is the action, and in another the time, expended

by light in going from any first to any second point, is found to be

less than if the light had gone in any other than its actual path, or

at least to have what is technically called its variation null, the

extremities of the path being unvaried. The mathematical novelty
of my method consists in considering this quantity as a function of

the co-ordinates of these extremities, which varies when they vary,

according to a law which I have called the law of varying action ;

and in reducing all researches respecting optical systems of rays to

the study of this single function : a reduction which presents
mathematical optics under an entirely novel view, and one ana-

logous (as it appears to me) to the aspect under which Descartes

presented the application of algebra to geometry.'

152



CHAPTER XVII.

RADIATION AND ABSORPTION : SPECTRUM ANALYSIS. ANOMALOUS DIS-

PERSION. FLUORESCENCE.

202. WE have already discussed the reflection (including scattering)
and refraction of light at the common surface of two media. We
have now to consider the absorption of light hi its passage through
material media, together with other associated phenomena.

According to the undulatory theory (which we now assume to be

true, and of the truth of which we shall receive additional evidence

as we proceed) light consists of waves propagated through a medium

(called the ether) which fills space.

The particles of a body which is emitting radiation must therefore

be hi rapid vibratory motion, and must communicate their motion

to the ether. The parts of the body, the vibrations of which are

communicated to the ether, may be the molecules, or the constituent

parts of the molecules, or even the atoms.

When a bell is struck violently and frequently the resulting sound

is extremely complex and consists of notes, of various pitches, which

may differ greatly from each other in intensity. The more violent

the blows upon the bell become, and the more rapidly they are

made, the more complex will the clang be. New forced vibrations

appear, and the intensity of each of those previously existing is

increased. It is only when the blows are excessively feeble and

unfrequent that the fundamental tone is heard by itself.

Now the molecules of a solid body, of high temperature, are con-

stantly colliding ;
and the vibrations induced in a molecule by one

collision do not die out before another is sustained. Hence the

radiation given off by such a body consists of vibrations of many
periods ; and, as the temperature of the body becomes higher, vibra-

tions of shorter and shorter period make their appearance, and the

intensity of all previously existing vibrations becomes greater.

Thus, if we examine the spectrum of a body the temperature of

which is gradually raised, we may at first perceive no luminous
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radiation at all ; but, as the temperature rises, first red light will

appear, then yellow, and so on, until a complete continuous spectrum
is seen, and the luminosity of every part gradually increases as the

temperature rises.

In the case of an ordinary gas, however, the molecules usually
are sufficiently free from collisions to allow of them vibrating in

their own proper modes. Hence radiations of definite periods only
will be emitted ; and thus the spectrum of a gas is discontinuous,!
and consists of bright lines. It varies with the temperature and(

pressure. As the pressure is increased the lines broaden out, and

the spectrum gradually becomes continuous, like that of a liquid

body or of a solid.

We already know ( 173) that a body which has a definite period
of vibration, and which is at rest, may be set in vibration by the

communication to it, through an intervening medium, of vibrations,

of its own proper period, which are emitted by another body.

Hence, if radiation travelling through the ether enters a material

medium (solid, liquid, or gas), and if the natural period of oscillation

of the molecules coincides with the period of some of the ethereal

vibrations, the molecules will be set in motion, and the energy of

the radiation will be diminished.

This is the process which is termed absorption.
In many cases (if not really in most cases) the period of the

induced vibration is longer than that of the ethereal vibration

which induces it
( 208). In almost all cases the absorbed energy

is manifested by a rise of temperature.
203. Equality of Emissivity and Absorptive Power. The

Absorptive Power of a body, under given conditions, for any definite

radiation, is the fraction of the whole incident radiation of that

kind which it absorbs. Now a black body is one which absorbs all

the incident radiation
;
so we might define the absorptive power for

the given radiation as the ratio of the amount of it which the body
absorbs to the amount of it which a black body would absorb.

The Emissivity of a body, at a given temperature, for any given
radiation, is the ratio of the quantity of that radiation which it

emits to the quantity of it which is emitted by a black body under
the same conditions.

An extremely simple relation connects these quantities: The

Emissivity and Absorptive Power of a body, at a, given tem-

perature, for any radiation, are equal.
The proof of this law was given by Stewart in 1858. The law is

(see 255) an extension of the statement, made by Prevost about a

century ago, that the radiation emitted by a body depends solely
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upon the nature of the body, and upon its temperature ; and various

experimental illustrations of it were known long before Stewart's

proof was given. Brewster had shown that definite portions of the

sun's light are absorbed in its passage through the earth's atmo-

sphere. Foucault had pointed out that, while the electric arc emits

(more freely than its other radiations) yellow light of two definite

refrangibilities, the light from one carbon pole is robbed of these two

kinds of radiation when it passes through the arc. Stokes also had

explained this by the analogous properties of sounding bodies
( 173).

It is known, as an experimental result, that a number of bodies,

at different temperatures, placed inside an enclosure which neither

allows radiation to pass outwards from within it nor inwards from

without it, will ultimately arrive at, and maintain, one common

temperature. But this could not result unless each body emitted

radiation at precisely the same rate as that at which it absorbed the

radiation. This proves the law so far as radiation as a whole is

concerned. [No such enclosure as has been postulated exists in

nature ; but a polished reflecting surface of silver would form a

sufficiently close experimental approximation ; and, the more nearly
the condition is satisfied, the more nearly does the result hold.]

The radiation inside the enclosure must be that of a black body
at the same temperature, for any one of the bodies might be a black

one. Let us suppose that one of the bodies absorbs one definite

radiation only, and allows all others to pass freely through it.

(Solutions of didymium salts approximately possess this property.)

This body must emit the same kind of radiation as it absorbs, and

that to precisely the same extent ; otherwise its temperature
would vary. This proves the law as stated for any definite

radiation.

Many experimental illustrations of the truth of the law were

given by Stewart. Thus, a piece of red glass, held in front of a

fire, appears red because it absorbs the green and blue rays. If

placed in the fire it becomes colourless when its temperature
becomes equal to that of the fire for it then still allows the red

rays to pass through it, and, in addition, itself emits the rays which

it absorbed. If taken out of the fire and held in a dark room it

emits bluish-green light precisely that which it absorbed.

Again, Stewart, and also Kirchoff (who arrived at the results

under consideration independently of, though somewhat later than,

Stewart), showed that a plate of tourmaline, cut parallel to the-

axis of the crystal, emits, when heated, light which is polarised

(Chap. XIX.) perpendicularly to that which it allows to pass, that

is, it emits the rays which it absorbs when cold.
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204. Spectrum Analysis. In order to examine the luminous

radiation emitted by a given body, we may place in front of the body
a narrow vertical slit, which is situated at the principal focus of a

convex lens. The light diverging from the slit is thus condensed

into a parallel beam which is passed through a prism (usually of

dense glass) and so gives rise to a spectrum. This spectrum is

magnified by means of a telescope. Such an arrangement essen-

tially constitutes the instrument called a spectroscope (or spectro-

meter, if a graduated circle and vernier are attached for the purpose
of determining the angular positions of the telescope when it is

directed towards different parts of the spectrum).
Let us suppose that we are examining the light emitted from a

highly-heated lime-ball, and that this light, before falling on the slit,

passes through a Bunsen. flame in which metallic sodium is being

vaporised. The lime-ball alone would give a continuous spectrum.
The sodium-tinged flame alone would give a discontinuous spectrum

consisting of two bright yellow or orange lines situated close together.

The spectrum actually observed is continuous, but has two bright lines

in the same position as those in the spectrum of the sodium flame.

If we vaporise the sodium in the flame of a spirit lamp instead of

in a Bunsen flame, everything else remaining the same, a con-

tinuous spectrum, crossed by two dark lines in the positions of the

former bright ones, will be seen. This was pointed out and explained

by Kirchoff.

The cause lies in the difference of the temperatures of the Bunsen
flame and the flame of the spirit lamp. A line will appear bright,

or dark, according as the intensity of the radiation of that particular
kind from a black body at the temperature of the flame exceeds,

or falls short of, the intensity of the radiation of that kind which is

emitted by the source. For, if R be the intensity of the given
radiation as emitted from the source, while B'=^?R is the intensity
of the light of that kind emitted from a black body at the tem-

perature of the flame, and p is the radiating power (or absorptive

power) of the flame for that radiation, the intensity of the given
kind of light which reaches the eye is R joR+p^>R = E[l-f-,o(_p--l)] .

This quantity exceeds, or falls short of, R, according as p is greater,
or less than, unity. If the source were a black body, p could not

exceed unity unless the temperature of the flame were greater than

that of the source ; but, the source not being a black body, p may
exceed unity, although the temperature of the flame is below that of

the source, i.e., bright lines may be visible. If, however, the differ-

ence of temperature of the source and flame be sufficiently great, the

lines will appear dark.
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The spectrum of sunlight was found by Wollaston and (later)

Fraunhofer to exhibit a number of persistent dark bands. In

accordance with the above principles we conclude that these lines

are due to absorption. Some of them can be shown to be due to

absorption in the earth's atmosphere, but the great majority are

produced by absorption in the (comparatively) cold vapours sur-

rounding the hot body of the sun. Sufficient matter to produce such

absorption does not exist in the space between the earth and the sun.

Now we can experimentally determine the kinds of radiation

emitted by the hot vapours of the various elementary substances.

And if it is found that any of these radiations are absent from the

spectrum of sunlight it is to be inferred that the vapours of these

substances (provided the cause is not terrestrial) are present in the

regions immediately surrounding the sun. In this way it is found

that a.great many substances existing on the earth's surface are

FIG. 122.

present in the sun in the form of vapour. The lines A, B (Fig. 122)

are due to oxygen, but have been shown to be caused by absorption
in the earth's atmosphere. The lines C and F are due to hydrogen.
The (double) line D is caused by sodium vapour. The (triple) line b

is produced by the vapour of magnesium. Some hundreds of lines

are caused by the presence of the vapour of iron.

In the same way the light emanating from any star, comet, or

nebula, etc., may be examined, and the chemical constitution of the

luminous body inferred. The various stars may be classified into

several groups according to the nature of their spectra, and this

classification indicates approximately their relative age. Generally

speaking, the more recent stars have bright-line spectra, while the

older stars exhibit continuous spectra crossed by numerous dark

lines. The spectra of nearly extinct stars, however, resemble those

of recent stars to a considerable extent.

If the slit of the spectrometer is wide the various coloured images

overlap and produce an impure spectrum ; and, under the same con-

dition, a bright light broadens out and becomes indistinct. But,

however narrow the slit may be, a line even if due to light of one

definite refrangibility alone has always some finite breadth. The
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reason is that the radiating molecules are in violent motion some

moving towards, others moving from, the observer.

If n be the number of vibrations produced in the ether per second,

and, if the molecule emitting the light be at rest relatively to the

observer, the wave-length, X, of the disturbance is given by the

equation V=nX, where V is the speed of light. But, if the molecule

be moving, relatively to the observer, with speed v, the wave-

length will be given by the equation V .v= n\' ;
and the apparent

change of wave-length is

Hence, the molecules of a luminous body having all possible speeds

included between the limits + v and -v, a bright line in the spec-

trum of its light will possess finite breadth, even when it corresponds

to one definite kind of radiation alone.

This principle has been applied to determine the rate of rotation

of the sun on its axis, the speed of projection of gases in a solar

eruption, and the rate of motion of stars to or from the earth.

205. Law of Absorption : Body Colour. Dicliroism. Let R
be the amount of radiation of some definite kind which falls upon
an absorbing medium. Let p (called the absorption co-efficient) be

the percentage of this radiation, which is stopped by a plate of the

medium of unit thickness. The quantity which passes through the

given plate is therefore R(l -p). A second plate of the substance,

also of unit thickness, will stop the fraction, p of this quantity ;
so

that the amount, E(l p)
2

, passes through a plate the thickness of

which is two units. And, generally, the quantity which passes

through a plate, the thickness of which is n units, is E(l -
p)".

This

practically vanishes, however small p may be (provided only that it

is finite), when n is sufficiently great. Conversely, the amount of

radiation, of the given kind, from a sufficient thickness of such a

substance, is equal to that of a black body at the same temperature.

[The expression R(l-p)"is only true on the assumption that p is

constant for all radiations considered. If it is not so, we must write

2 . E(l-p)" instead.]
A substance which absorbs (say) red light, will appear bluish-

green when viewed by transmitted light. And, the greater the

thickness of the substance through which the light passes, the

denser will be the apparent colour, until, finally, practically no

light can pass.

Hence a substance into which light penetrates for a short distance

and is then reflected out, will appear to be coloured, provided that

selective absorption takes place, and its colour will be the same as
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that of the light which it transmits. This colour is termed the

body colour of the substance.

For example, a mixture of blue and yellow pigments appears to

be green because, if white light falls upon it, the particles of the

blue pigment absorb the rays of small refrangibility, while the par-
ticles of the yellow pigment absorb the rays of large refrangibility.

The green rays alone are partially reflected by both substances, and
so the mixture appears to be green. (A mixture of blue and yellow

lights is of a purplish colour. This may be seen by rotating rapidly
a disc, divided into sectors, some of which are coloured yellow, and

some blue.)

Now suppose that some substance absorbs (say) red light and

green light, and let the coefficient of absorption for red light be

much greater than the coefficient of absorption for green light.

Suppose also that, in the incident light, the red rays are more
intense than the green rays. It is obvious that, while the intensity
of the red rays in the transmitted light will exceed the intensity of

the green rays so long as the thickness of the substance is small,

after a certain thickness is reached, the green light will be trans-

mitted in greater intensity than the red light. The colour of such

a substance will therefore change from a reddish hue to a greenish

hue, as seen by transmitted light, as its thickness increases. This

phenomenon is known as dickroism.

The accompanying diagram illustrates these facts graphically.

The abscissae of the curves represent the thicknesses of the absorbing

medium
; the ordinates of one set of curves represent the intensities

of the transmitted light of one kind, and the ordinates of the other

set indicate the intensities of the transmitted light of another

kind, corresponding to the various thicknesses. The numbers

accompanying the curves indicate different values of the coefficients

of absorption. At the point p the high absorptive power (0'7) of the

substance for the originally more intense light has diminished the

intensity of that light to the same value as that which is exhibited

by the originally feeble light, for which the co-efficient of absorption

is only O'l.

Many such bodies occur in nature. For example, glass, coloured

with a cobalt salt, while it transmits blue light when its thickness is

small, appears red by transmitted light when its thickness is suffi-

ciently great.

The law of absorption, above stated, must be true (neglecting

such extraneous effects as internal reflection or scattering of light)

so long as the^coefficient of absorption does not depend upon the

intensity of the light. Such experiments as have been made to test

this point furnish confirmatory evidence.
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206. Surface Colour: Metallic Reflection. Some substances

reflect from their surface certain rays only; thus gold reflects

yellowish rays, and copper reflects reddish rays. The colour pro-

duced by this ' metallic reflection
'

is called surface colour.

The light which is transmitted by a thin film of such substances

is complementary to that which is reflected, that is, the transmitted

light and the reflected light together make up a light of the same

FIG. 123.

composition as that which was incident upon the surface. The
reflected light cannot be plane-polarised at any angle of incidence

(Chap. XIX.).

Many substances, besides metals, exhibit surface colour for

example, thin films of rose aniline, or of blue aniline, etc., appear of

different colours according as they are viewed by transmitted, or by
reflected, light. Such films may be prepared by placing a layer of



236 A MANUAL OF PHYSICS.

an alcoholic solution of the aniline on a plate of glass and allowing
the alcohol to evaporate. The colour, as seen by reflected light,

varies somewhat with the angle of incidence.

The light reflected from such films cannot be entirely polarised at

any angle of incidence. It consists of two parts a part which can
be plane-polarised at a certain angle of incidence and is identical

with the transmitted light (which, in fact, constitutes the body
colour of the substance) and a part which cannot be plane-polarised,
and so resembles the surface colour of metals. The polarisable part

may be got rid of by suitable means, so that the remaining part may
be examined alone. In the case of permanganate of potash, Stokes

found that the surface colour seemed to be due to precisely those

rays which were absent from the transmitted light, or, which is the

same thing, the body colour. Hence, the colour of the light trans-

mitted through this substance is due only to a very slight extent, if

at all, to absorption. The spectrum of the transmitted light has

five dark bands in the green part ; the reflected light is green, and

the spectrum of the surface-colour portion of it consists of five bright

bands, which correspond to the dark bands in the spectrum of the

transmitted light.

207. Anomalous Dispersion. In close association with the

existence of dark absorption bands appears the phenomenon of

anomalous, or abnormal dispersion.

In general, the rays of greater wave-length suffer refraction, on

passage through a prism, to a smaller extent than the rays of

shorter wave-length. But, in many substances, this rule does not

hold. Such media are said to possess the property of anomalous

dispersion.

Fox Talbot was the first to observe the phenomenon, but he did

not publish his observations for about thirty years. In the mean-
time Le Koux has observed that iodine vapour refracted red light

more than it refracted blue light.

Christiansen, Kundt, and others have widely extended our know-

ledge of such substances. Kundt has shown that the property of

anomalous dispersion is possessed by all substances which exhibit

surface-colour.

If a continuous spectrum, such as may be given by a glass prism,

be examined through another prism of a substance which exhibits

abnormal dispersion, the spectrum will no longer be continuous but

will present one or more dark bands. If the second prism be now
turned so as to have its edge at right angles to the edge of the glass

prism, the parts of the continuous spectrum will be displaced from

their original positions to an extent depending upon the refractive
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index of the substance for each kind of light. The displacement of

the rays, in a part of the spectrum close to a dark band, but of

smaller wave-length than the absorbed rays, is abnormally small;

and the displacement of the rays of slightly larger wave-length than

those which are absorbed is abnormally great (Fig. 124).

FIG. 124.

The general law, as given by Kundt, is that the rays of slightly

less refrangibility than the absorbed rays have their refrangibility

abnormally increased, while the rays of slightly greater refrangi-

bility than the absorbed rays have their refrangibility abnormally
diminished on passage through the absorbing medium.

208. Fluorescence. The phenomenon of fluorescence is also

necessarily associated with the absorption of light.

Brewster observed that the path of a beam of white light through
a solution of chlorophyll glows with red light, and he termed the

phenomenon
' internal dispersion.' Then Herschel noticed that the

surface of a solution of sulphate of quinine upon which sunlight
falls is of a bright blue colour. He named this appearance

*

epi-

polic dispersion '; but Brewster showed that the blue colour could be

manifested in the interior of the liquid if the beam of sunlight were

sufficiently concentrated, and so he concluded that the phenomenon
was of the same kind as that which he had already observed in the

case of chlorophyll and fluorspar, etc.

Stokes has shown that a great many ordinary substances, such as

bone, white paper, etc., possess this property, to which (avoiding

any reference to dispersion) he gave the name of fluorescence, from
its being noticeable in fluorspar. His method of observation con-

sisted in allowing a beam of light to enter a darkened chamber

through a plate of blue cobalt-glass. This beam fell partly upon a

white non-fluorescent body (white porcelain), and partly upon the

body under examination. The light reflected from the two sub-

stances was then examined through a slit and prism. In this way the

fluorescent light was compared with the light which produced it.

Stokes found that the light which was emitted by the fluorescent

body was always of lower refrangibility than the light which pro-
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duced it. The fluorescence of sulphate of quinine is due to the

extreme violet rays of the spectrum, and to invisible rays of still

higher refrangibility. Hence, by means of such a solution, the

absence of rays beyond the visible part of a spectrum may be deter-

mined. For, if the spectrum be thrown on a screen damped with
this solution, fluorescence is produced, beyond the usual visible part,

except when rays of certain refrangibilities may be absent. In the

case of chlorophyll the light which produces the effect is chiefly in

the visible spectrum.
The explanation of the phenomenon given by Stokes is that the

ethereal vibrations are absorbed by the fluorescent matter, which is

set in vibration, the period of its vibration being usually longer than,
never shorter than, the period of vibration of the ether. The

vibrating matter now reacts upon the ether, and sets up in it vibra-

tions which are generally longer still, but are never shorter than those

induced in the molecules of the matter. This explains the lowering
of refrangibility.

Dynamical illustrations of such interaction can be given. The

following is due to Stokes. Ships at rest on a calm sea may be set

in vibration by waves of definite period propagated from a distance.

The natural period of oscillation of each ship will not generally

agree with that of the waves. Any ship which is thus set in vibra-

tion will, by its vibrations, produce waves which spread outwards

from it
; but the period of these waves will generally be greater

than that of the original waves, and can never be less than it.

If Stoke's's explanation be true it is to be expected that the light

which gives rise to fluorescence will be absent from the absorption

spectrum of the substance. This is invariably the case.

Phosphorescence is precisely the same phenomenon as fluores-

cence. The only difference which subsists between the two is a

difference of duration. Phosphorescence (so-called) frequently lasts

for hours after the stimulating radiation is removed ;
fluorescence is

maintained usually for only a small fraction of a second after the

light ceases to fall on the substance.

Becquerel demonstrated and measured the finite time of duration

of fluorescence in many substances. His apparatus consisted of a

box with perforated revolving discs at either end. The perforations
were so arranged that one end of the box was closed, while the

other was open. The substance which was to be tested was placed
inside the box, and, on the discs (which had a common axis) being

rotated, an intermittent beam of light passed through the substance.

No light could pass out at the end of the box opposite to that at

which the light entered unless the substance were fluorescent.
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But, that condition being satisfied, light could pass through when

the speed of rotation of the discs was sufficiently great.

The duration of fluorescence is exemplified in the above dyna-

mical illustration by the continued oscillation of the ships for some

time after the cessation of the disturbance which originates it.

209. Theories of Dispersion. Cauchy was the first to advance a

dynamical theory of dispersion. He ascribed it to the coarse-grained-

ness of the matter of which the dispersing substance is composed.

The great difficulty of this theory is that, in order to account for the

observed values of the refractive indices of substances such as glass,

etc., the number of molecules of matter existing side by side in the

length of a wave of light must be assumed to be much smaller than,

from other considerations ( 146), can possibly be admitted. Sir W.
Thomson has recently shown that Cauchy's hypothesis can be so

modified as to enable it to surmount this difficulty.

This hypothesis leads to an expression for the refractive index,

H, of any substance of the form

where a, &, and c, etc., are constants, and X is the wave-length.

This formula shows that the refractive index increases as the wave-

length diminishes. Its results accord very well with experimental

observations within the range of the visible spectrum, but it does

not apply well to the invisible rays at the less refrangible end of

the spectrum. The various terms rapidly diminish in numerical

magnitude.
Briot generalised Cauchy's investigation somewhat, and deduced

the expression

.

which agrees better with experimental observations than the

former does, and applies to a much greater range of wave-lengths.
The term x\z

depends upon the direct action assumed to exist

between the ether and matter.

Modern theories (for example, that of v. Helmholtz) have regard,

not so much to space relations between wave-length and molecular

distance >as to time relations -between the period of vibrations in

the ether and the period of free oscillation of the material molecules.

V. Helmholtz assumes the existence of a viscous resistance to the

motion of the molecules. When the periods of the ethereal and the

molecular vibrations are identical, or approximately identical,
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absorption takes place, and, because of the viscosity, the vibrational

energy takes the form of heat.

Thomson's results differ from those of v. Helmholtz chiefly
because he purposely avoids the assumption of the existence of

viscosity. He obtains the equation

when ft is the refractive index, r is the period of vibration of the

ether, and xi, x2 , etc., are the natural periods of oscillation of the

molecules arranged in ascending order of magnitude. So long as T
is considerably greater than xi and considerably less than x2 ,

this

equation will correspond to the case of ordinary refraction. As "7"

approaches x in value the refractive index is abnormally increased.

When r is less than xit ^ is at first negative, but afterwards becomes

positive, though abnormally small, as T still further decreases.

This explains the existence of anomalous dispersion. Negative
values of /*

2
,
which accompany anomalous dispersion, indicate the

existence of absorption or metallic reflection.

Thus the high reflecting power of silver is, on this theory, due to

the fact that each one of all the kinds of radiation which are observed

to be reflected from it has a vibrational period which is smaller

than the smallest of the natural periods of oscillation of the mole-

cules of silver.

Again, when r has such a value that n is positive, but is less

than unity, the particular radiation, of which r is the period, will

pass through the substance more quickly than it passes through
air.

The energy of the rapid vibrations of the molecules is gradually

transmuted into energy of the slow vibrations. This explains fluor-

escence and the radiation of heat from a body which has absorbed

light. The molecule may be so constituted that the fluorescence (or

phosphorescence) may last for a very long time.



CHAPTEE XVIII.

INTERFERENCE. DIFFRACTION.

210. Principle of Interference. If light consists of undulations,

propagated through the ether, the effects of which, at any point of

the ether, are superposed in precisely the same way as are the

effects of separate simple harmonic motions
( 52), we should

expect that conditions might occur under which the resultant

motion at that point would be null while, under other conditions,

the resultant motion might be exceptionally great. We already
know that, for a similar reason, when waves are propagated along
the surface of water from two different sources, no resultant disturb-

ance of the surface may exist at certain points. So also sounds

from two different sources may be totally unheard by an ear placed
at certain positions within hearing distance..

In order to produce continuous interference at given points it is

absolutely necessary that the waves diverging from two sources

should be of precisely the same period, as otherwise the resultant

disturbanoe would vary from a minimum to a maximum alternately.

Thus, in the case of sound, difference of period gives rise to beats

which may be observed by the ear.

Now the phase of the vibration emitted from one point of a

name has absolutely no relation with the phase of that emitted

from any other point ; and hence we cannot expect observable inter-

ference between rays coming from different luminous sources. Inter-

ference of course does occur between such rays constantly, but, in

general, the alternations between maximum and minimum effects

will succeed each other so rapidly that the eye can perceive no varia-

tion of intensity.

Therefore we conclude that, in order that persistent interference]

effects may be observable, the two interfering rays must originally
1

have proceeded from a common source.

More than two centuries ago Grimaldi observed that, when

rays of light from two sources overlapped each other and fell

16
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upon a screen, the portion of the screen which was illuminated by
the two rays appeared to be darker than when it was illuminated

by one ray alone. He allowed sunlight to enter a darkened

chamber through two small apertures in the shutter. But these

apertures were illuminated by light coming from all portions of the

sun's disc, and so the effect which Grimaldi observed, to whatever

cause it may have been due, could not have been produced by inter-

ference. Grimaldi, indeed, was not looking for interference pheno-
mena this was not thought of until 150 years later he wished to

prove that light was not material, since two portions of light appar-

ently destroyed each other. And this reasoning is practically con-

clusive, for the conditions which would have to be assumed, in

order to make an explanation of these phenomena by the emission

theory possible, would be so arbitrary and artificial that no one

could seriously advance them.

211. Young's Experiment. Young was the first to observe true

interference effects. He admitted light through a single small

aperture in a shutter behind which he placed another shutter

pierced by two small openings. In this way he obtained two

rays of light which proceeded originally from a common source

the single opening in the first shutter. That portion of a screen

which was illuminated by both rays was crossed by alternately-

arranged dark and bright bands. Young observed that the bands

became narrower when the distance between the holes in the second

screen was increased. He also noticed that the effect disappeared

if either opening were closed.

The wave theory affords a ready explanation of the phenomena
which Young observed.

Let A, A' (Fig. 125) represent the two openings in the screen, and

let AP, AT be two rays which each illuminate the point P of the

I
.XI

FIG. 125.

screen PN. M is the central point of AA', and MN is drawn per-

pendicular to AA' and PN. Denote the length of AM (or A'M) by

a and the length of MN by b, and let x represent the distance PN.
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The waves, which travel along AP and A'P, start from A and A'

respectively in the same phase. Consequently the point P will be

bright or dark according as AP - A'P is an even, or an odd, multiple

of half a wave-length.
Now AP2=(a+o0

2+&2 and A'P2= (a-o0
2+&2

. Therefore AP2 -
A'P2= (AP+A'P) (AP- A'P) = 4ax. But (a and x being very small

in comparison with b) AP-f-A'P is approximately equal to 26, and

so the condition gives

2ax X

and the point P is bright or dark according as n is an even or an

odd integer.

This formula indicates that, to the degree of approximation with

which we are dealing, the locus of P, when b varies and n is con*

stant, is the straight line MP. The eaact locus is a hyperbola, of

which A and A' are the foci. This follows at once from the con-

dition AP A'P=a constant.

A and A' may, of course, represent narrow luminous strips with

their length perpendicular to the plane of the paper. The point P
then corresponds to a dark or bright band also perpendicular to the

plane of the paper.

By measuring the quantities a, b, and x, and by counting the

number, n, of the particular band under observation, we can calculate

the value of X.

The distance between the n'
h and the (n+l)'* band is independent

of n, and is therefore constant when a, b, and X are fixed.

212. Fresnel's Experiment. In Young's experiment the beams
of light passed through apertures cut in a solid. Hence the observed

effects might have been due to diffraction
( 224) . The result was that

Young's explanation was not generally accepted ; but a modification

of his experiment, made by Fresnel, completely settled the matter.

Light, diverging from the point fi (Fig. 126), is reflected from two

mirrors, OB, OS, which are hinged: together at 0, and are inclined to

each other at a very small angle. After reflection the rays appear to

diverge from A and A', the images of B in OS and OB respectively.
Hence A and A' act as two sources of

:

light, the radiation emitted

from each of which is similar in all respects to that emitted from the

other. The light has nowhere passed through an aperture, so that

the objection made to Young's form of the experiment does not

apply, and yet the same effects are observed to occur.

The points A', A, and ^f obviously lie on a circle, the Centre of

which is at ; and the lines OB and OS are respectively perpendi-
162



244 A MANUAL OF PHYSICS,

cular to A'B and AB. Hence the angle A'BA is equal to the angle

of inclination of the mirrors= 9 (say) ._
But A'OA= 2A'BA= 20 ; and

FIG. 126.

OM is practically equal to OB = r (say). Therefore, if we denote

ON by r\ the formula of last section becomes

X

Very accurate adjustments are necessary in order to obtain good
results from this form of the experiment.

213. Lloyd's Experiment. Lloyd repeated the above experiment
with only one mirror. A ray of light diverging from a slit, A'

(Fig. 127), is reflected in part, at grazing incidence, from a mirror

N

FIG. 127.

KS. We thus obtain two rays of light, one actually diverging

from A', and the other apparently diverging from A, the image of A'

in BS ; and these rays produce interference effects as formerly.

Yet one distinct difference is observable. In both forms of the

experiment previously described the point N is brightly illuminated,

for AN - A'N= 0. In Lloyd's experiment N is dark, and the whole

system of bright and dark bands is shifted by the breadth of one

band. In explanation of this Lloyd suggested that the phase is

altered by 180 in the act of reflection.



LIGHT : INTERFERENCE, DIFFRACTION. 245

In all cases the slit through which the light passes should be

narrow
;
but this is not of so much importance in the present case

as in the previous cases. For the slit A is the inverted image of A',

and so M is the centre of all corresponding parts of A and A', the

part of A which is nearest to M being the image of the part of

A' which is nearest to M, and so on. Hence the effects of all the

parts are strictly superposed at P. But, in the two previous cases,

since there is no inversion of A' with respect to A, the part of A'

which is nearest to M corresponds to the part of A which is farthest

from M (M being taken as the middle point of the line joining the

central parts of the slits), and so on. Hence the systems of bands

due to the light from the various corresponding parts of the two

slits are not exactly superposed, and the definition is in consequence
less accurate.

214. Fresnel's Biprism. A second form of the experiment, to

which also the objection taken to Young's experiment does not apply,
is due to Fresnel. ES (Fig. 128) is a glass prism of very obtuse angle.

It is placed with its flat face towards M, the source of light. Each
half of the prism forms an image of M, so that the rays emerge from

the other faces of the prism as if they proceeded from points A and A',

which are practically situated on a straight line, through M, drawn

perpendicular to the flat face of the prism. If i^ r1? are the angles
of incidence and refraction at the flat face of the prism, while i,, r2 , are

the similar angles at the opposite face, the total deviation of the ray
ME, i.e., the angle A'EM is

( 192) i^n+i^-r^ These angles

being small, ii and i.2 are respectively equal to pr^ and \ir^ \i being
the refractive index of the substance of which the prism is composed.
Hence the deviation is (p -1) (r1+r2)

=
(/

t 1), where a is the acute

angle of the prism. This gives A'M(=AM) = &(/*- l)a approxi-

mately, b being the distance of M from the biprism, and so the

formula giving the value of x becomes

l)ax \,~

where b' is the distance between the prism and the screen.
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215. Coloured Interference Bands. In the immediately pre-

ceding sections we have assumed the wave-length to be constant.

But the breadth between two adjacent bright or dark bands is pro-

portional to X, and so the band situated at N is the only one which
is colourless. All other bands are coloured, the first red band being
about twice as far from

t
N as the first violet band. About a dozen

of these bands can be fairly well distinguished when ordinary white

light is used
; but the succeeding bands of different colours are so

superposed that all traces of interference effects practically disappear,
and the screen seems uniformly illuminated.

If the quantity a in the formula of 214 were variable and pro-

portional to X, x would be constant for all wave-lengths, that is, the

bands would be colourless. This effect may be attained by the use

of a diffraction grating ( 233).

In the biprism method the distance between the points A and A'

depends upon the wave-length, and is greater the shorter the wave-

length is. The result is that the coloured bands are more widely

separated than they usually are.

The introduction of a coloured glass, which diminishes the

number of different kinds of light in the interfering beams, produces
a very marked increase in the number of bands which are visible.

As many as 200,000 bands have been counted when a flame, tinged

deeply orange by burning sodium, was employed as the source of light.

When the difference between the lengths of the paths travelled by
the two interfering rays is a very large multiple of the wave-length,
the nature of the vibrations may have completely altered in the

interval of time between the setting out, from the source, of the two

waves which simultaneously reach P, so- that no interference could

occur. But the fact that no more than 200,000 bands have ever

been counted does not prove that no more than 200,000 vibrations

of the ether at a given point are sufficiently nearly similar to pro-

duce continued interference, for we can neither obtain absolutely

monochromatic light nor use an infinitely narrow slit. Yet the

converse statement, that 200,000 successive vibrations are practically

similar, is true.

216. Displacement of Bands by Befracting Media. If a dense

medium be placed in the path of one of the two interfering rays,

the whole system of bands will be displaced towards that side of

MN on which the medium is placed. For if t be the thickness of a

medium of refractive index //, which is traversed by the ray, the

effect is the same as if the ray had traversed a thickness, pi, of air.

Thus the effective length of the path of that ray is increased by the

amount (/i 1) t.



LIGHT : INTERFERENCE, DIFFRACTION. 247

Let L (Fig. 129) represent the medium interposed in the path of

the ray AT. The effective length of A'P is increased, and so the

length of AP must be increased. In other words, PN must increase.

Suppose now that L is removed, and that we shift A' back from

the screen through the distance (^
-

1)^/2 into the position A/. Let

also A be moved towards the screen, through the same distance,

FIG. 129.

into the position Ax . In this way the effective length of A'N is

increased, relatively to that of AN, by the amount (n l)t ; and the

central band, originally at N, will now be found at Q, which is such

that MQ is perpendicular to AiA'j. But QN/MN = AAj/AM =

(/* l)/2a. Hence the displacement of the central band (if we are

dealing with monochromatic light) is

When the light is not monochromatic the displacement of the central

(which is then the brightest) band could only be given by this for-

mula if the refracting substance did not produce dispersion, i.e., if

^ were independent of X. The brightest effect will really be- pro-

duced at a place where the rate of variation of QN with X is a

minimum, for, at such a place, the various adjacent coloured bands

are most nearly superposed.

By means of the formula the refractive index of the interposed

substance may be found with extreme accuracy. The method is

specially applicable to the determination of the refractive indices of

gases.

217. Interference Bands in Spectra. If a beam of white light,

diverging from a narrow slit, be made parallel by a suitable lens,

and then be refracted by a prism, the usual continuous spectrum
will be obtained. But if a plate of a refracting substance be inter-

posed in the path of one half of the beam, the spectrum will be
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crossed by dark bands. The reason is that one half of the rays are

retarded relatively to the other half, and so interference effects are

produced. Those rays, the relative retardation of which amounts

to a semi-wave-length, are obliterated.

Various forms of this experiment are described by Powell, Fox,

Talbot, Brewster, and Stokes.

218. Colours of Thin Plates. Reflected Ltght.Thm films of

transparent substances are frequently observed to be brilliantly

coloured. The colours vary with the angle of incidence and with

the thickness of the film.

Familiar examples occur in the cases of a soap bubble, of the

wing of the common house fly, and of highly tempered steel, etc.

In the latter case the thin film consists of an oxide formed on the

FIG. 130.

surface of the steel at a high temperature. Very old glass vessels

frequently exhibit these colours from the partial splitting away of

thin films at the surface of the glass.

The wave theory gives a complete explanation of these pheno-
mena.

Let AB represent a film, of (small) thickness
,
of a substance the

refractive index of which is
//.

A ray, ab, falling upon the upper
surface of the plate is partially reflected along be and in part is

refracted along bd. The refracted ray suffers partial reflection in

the direction db' and finally emerges from the substance in the

direction b'c' parallel to be.

If perpendiculars b'm and b'n be dropped from b' upon be and bd,

the parts bm, bn of these paths intercepted between b and the feet

of the perpendiculars are described in equal times. Hence the

effective difference of path described by the two rays is nd-\-db',

which is equal to 2 cos ?, where r is the angle of refraction. And
this portion is described in a substance of refractive index ^ so that

the equivalent path in air is

2/* cos r.

It might, therefore, be expected that the effects of the two rays
would be mutually intensified when this quantity is an integral
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multiple of a wave-length, that they would mutually annul each

other when it is an odd multiple of a semi-wave-length, and that,

when the thickness of the plate is much smaller than a semi-wave-

length of violet light, all rays would be intensified, so that white

light would be reflected.

But the exact; reverse of these effects are observed. When the

thickness of the plate is very small no light is reflected, and, when
the quantity ^\ii cos r is an odd multiple of half a wave-length, the

light is strongly reflected. These results are precisely those which

would occur if, in the acts of reflection at the upper and under faces,

a difference of phase of half a period were introduced.

The conditions under which the two reflections take place are

exactly opposed to each other. In the one case the light is passing

from a rarer into a denser medium : in the other it is passing from

a denser into a rarer medium. Hence, reasoning by analogy from

the effects of impact of two elastic balls of different masses, Young

pointed out that the relative acceleration of phase which seems to be

required ought to be produced. [The propagation of waves along a
^

rope composed of two parts of different linear densities, is precisely ,

analogous. A wave propagated along the less dense portion is in part

reflected from the junction with a complete reversal of phase.

(As an extreme case imagine the rope to be fixed at the junction. Jj

This corresponds to infinite density of the second part.) A wave

travelling along the more dense portion is partly reflected at the

junction without change of phase.]

Young pointed out that if his explanation were correct an entire

reversal of the effects should occur when the reflecting plate was
intermediate in density between the media on either side of it.

Further, he carried out such an experiment, and found that his pre-

diction was verified. Lloyd's experiment ( 213) furnishes another

verification of the correctness of Young's explanation.
The effective difference of path, 2ju cos r, decreases as the angle

of incidence increases, and therefore the wave-length of the reflected

light decreases as the angle of incidence increases. If the refractive

index and the thickness of the plate be sufficiently large the series of

colours may be repeated a number of times, but, if ordinary white

light be used, partial overlapping will occur between all the series

above the second, for the wave-length of the extreme red light of

the spectrum is approximately double of that of the extreme violet

light.

219. The above explanation of the reflection of light from thin

plates is not quite complete. The intensity of the reflected ray, be,

is always greater than that of the ray b'c', and so complete
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annulment of light is not accounted for. But complete annulment
does take place. A complete treatment of the problem was given

by Poisson, who pointed out that all the various rays which emerge
at V must be taken into account. The ray which enters at b and
suffers one internal reflection at d before it passes out of the plate at b'

\AA/V
fed

FIG. 131.

has the greatest effect in producing the final result
;
but the ray which

suffers two such internal reflections (at e and d) before emergence
also has a considerable effect. Similarly, those which have under-

gone three, four, etc., internal reflections, have each an appreciable,

though rapidly diminishing, share in the ultimate result.

The effective difference of path between the ray which has

suffered n such internal reflections, and the ray which is once reflected

externally at b is ^n\it cos r+X/2, the semi-wave-length being added

in order to take account of the acceleration of phase produced in the

act of reflection at b. This being taken into consideration it is

found that the intensity of the light reflected from the plate does

vanish when 2/i cos r is an even multiple of X/2, and that it is a

maximum when 2/j.t cos r is an odd multiple of X/2.

220. Colours of Thin Plates. Transmitted Light The light

which is transmitted through the plate is complementary to that

which is reflected from it ; that is, the kinds of light which are

absent from the reflected beam are precisely those which are present
in the transmitted beam.

The intensity of the reflected light is never equal to that of the

incident light, and so the intensity of the transmitted beam never

entirely vanishes. Also, since the minimum intensity of the

reflected light is zero, the maximum intensity of the transmitted

light is equal to the intensity of the incident light.

221. Newton's Rings. Newton observed the colours produced by
the interference of rays reflected from both sides of a thin film of

air enclosed between two pieces of glass. One of the pieces of glass

had a plane surface ; the surface of the other was convex and

spherical.
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The thickness of the film of air at a distance, d, from the point of

contact is approximately d2
/2B where E is the radius of the spherical

FIG. 132.

surface. Hence the condition that light of wave-length X shall be

intensified is

u'd?r

R
- cos r

n being any integer, and so the point of contact is surrounded by a

series of bright rings. In this formula, r is the angle of refraction

from glass into air and n' is the reciprocal of the refractive index of

glass. The radii of successive bright rings are therefore given by

sec r (2w+l)/2 . X,

where /i is the refractive index of the glass referred to air.

It follows from this formula that the replacement of the film of I
\

air by a denser substance would cause all the rings to close in some-
1

1

what towards their common centre. This result is proved by experi-l |

ment, and hence we get another proof of the fact that light travels

slower through a medium such as water than it does through air.

The successive radii are proportional to the square roots of the

natural numbers of the even numbers in the case of the dark

rings, and of the odd numbers in the case of the bright rings, and
so successive rings enclose equal areas.

The radii also increase as the wave-length increases, and so the

first red ring is farther from the centre than the first blue one is.

Lastly, d increases when the angle of incidence increases.

When the two pieces of glass are pressed sufficiently close

together a black spot appears at the centre. The central thickness

is then very small in comparison with the wave-length of any
visible light, and so the reflected light vanishes

;
for the effective

length of the paths traversed by rays which emerge at a given

point after internal reflection is practically the same as that of the

light which is directly reflected at the same point without entering
the thin film, and so the two sets of rays practically differ in phase

by half a period.

The transmitted light is complementary to that which is reflected.

The central portion is therefore white.
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Theory indicates that if the refractive index of the film be inter-

mediate between the indices of the two transparent media which

bound it, the rings seen by reflection should commence from a

white centre. Young verified this prediction by means of a film of

oil of sassafras enclosed between a lens of crown glass and a lens of

flint glass.

222. Colours of Mixed Plates. If a bright object be viewed

through an intimate mixture of two media of different refractive

indices (e.g., a mixture of oil and air enclosed between glass plates),

colours are observed to which Young gave the name of ' colours of

mixed plates.' The colours are arranged in rings precisely as in the

case of those seen by transmission of light through a thin homo-

geneous plate, but the whole system is on a larger scale. The

phenomenon is due to the interference of the rays which pass

through the different media and so suffer relative change of phase.

When the incident light is oblique and a dark object is placed

behind the plates, the system resembles that which is ordinarily

seen by reflection, for one of the interfering portions is reflected and

undergoes the usual acceleration of phase.

223. Colours of Thick Plates. Brewster observed that, in certain

circumstances, interference may be produced by means of plates the

thickness of which is not small in comparison with the wave-length

of light.

AB and BC (Fig. 133) represent two such plates of parallel glass,

which are precisely equal in thickness, and are inclined to each

other at a small angle, .

A pencil of light, Pm, falls perpendicularly upon the plate BC,

and, passing through it, is partly reflected from the first surface of

FIG. 133.

AB and in part is refracted into the plate AB. A portion of the

refracted part is reflected at ra. If r be the angle of refraction in

AB the effective difference of path so produced between the two
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portions of light is Ipt cos r= 2/i cos sin- 1
(l/^ . sin a), where

/*
is

the refractive index and t is the thickness of the glass. A similar

action occurs at the plate BC, and the rays which were reflected

from the first surface of AB sustain, relatively to the other rays, an

effective increase of path to the amount Ipt cos r' = 2^ cos sin- 1

(l//z . sin 2), r' being the angle of refraction in BC. The effective

difference of path of the two rays, pq, which finally emerge from

the side of AB remote from P, is therefore

2ju(cos
sin"

1^ sin )
- cos sin

(
sin 2a)

).

Interference occurs when this quantity is sufficiently small.

Jamin has applied this principle to the construction of an

extremely sensitive instrument for the measurement of refractive

indices.

Newton observed interference effects when he allowed light to

fall upon the surface of a concave glass mirror which was silvered

behind. The mirror was everywhere of uniform thickness and the

light was admitted through a small opening in a sheet of white

paper the opening being situated at the centre of curvature

of the mirror. A few broad coloured rings, resembling those due

to light transmitted through a thin plate, were seen on the paper.

All these rings were concentric with the opening through which the

light passed.

The origin of these colours is totally different from that of the

colours which Brewster observed. The rings are due to the inter-

ference of light, ordinarily reflected at the silvered surface of the

mirror and then scattered by particles of dust on the first surface,

with light, also reflected from the silvered surface, but which had
been previously scattered (or, rather, diffracted} by particles of dust

upon the first surface of the mirror.

When the mirror is slightly inclined the centre of the coloured

rings is situated midway between the opening in the paper and the

image of it which is formed upon the paper. This central spot is

alternately bright and dark (when homogeneous light is used), as

the distance between the opening and its image increases
;

it

undergoes a rapid variation of colour when the incident light is

white.

224. Diffraction. The principle by means of which Huyghens
explained the rectilinear propagation of light has already been

given ( 186). The following remarks of Stokes on this subject are

specially worthy of note.
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' When light is incident on a small aperture in a screen, the illu-

mination at any point in front of the screen is determined, on the

undulatory theory, in the following manner. The incident waves

are conceived to be broken up on arriving at the aperture ; each

element of the aperture is considered as the centre of an elementary

disturbance, which diverges spherically in all directions, with an

intensity which does not vary rapidly from one direction to another

in the neighbourhood of the normal to the primary wave, and the

disturbance at any point is found by taking the aggregate of the

disturbances due to all the secondary waves, the phase of vibration

of each being retarded by a quantity corresponding to the distance

from its centre to the point where the disturbance is sought. The

square of the co-efficient of vibration is then taken as a measure of

the intensity of illumination. Let us consider for a moment the

hypothesis on which this process rests. In the first place it is no

hypothesis that we may conceive the waves broken up on arriving
at the aperture : it is a necessary consequence of the dynamical

principle of the superposition of small motions, and if this principle
be inapplicable to light, the undulatory theory is upset from its very
foundations. The mathematical resolution of a wave, or any portion
of a wave, into elementary disturbances must not be confounded

with a physical breaking up of the wave, with which it has no more

to do than the divisions of a rod of variable density into differential

elements, for the purpose of finding its centre of gravity, has to do

with breaking the rod in pieces. It is a hypothesis that we may
find the disturbance in front of the aperture by merely taking the

aggregate of the distubances due to all the secondary waves, each

secondary wave proceeding as if the screen were away ;
in other

words, that the effect of the screen is merely to stop a certain portion
of the incident light. This hypothesis, exceedingly probable, a

priori, when we are only concerned with points at no great distance

from the normal to the primary wave, is confirmed by experiment,
which shows that the same appearances are presented, with a given

aperture, whatever be the nature of the screen in which the aperture
is pierced ; whether, for example, it consist of paper or foil, whether

a small aperture be divided by a hair or by a wire of equal thickness.

It is a hypothesis, again, that the intensity in a secondary wave is

nearly constant, at a given distance from the centre, in different

directions very near the normal to the primary wave ; but it seems

to me almost impossible to conceive a mechanical theory which

would not lead to this result. It is evident that the difference of

phase of the various secondary waves which agitate a given point

must be determined by the difference of their radii, and if it should
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afterwards be found necessary to add a constant to all the phases

the results will not be at all affected. Lastly, good reasons may be

assigned why the intensity should be measured by the square of the

co- efficient of vibration.'

225. Huyghens' construction, if rigorously carried out, would

indicate the existence of a wave running back towards the source

as well as a wave which travels forwards. Analogy points to

the conclusion that the part of the construction which leads to a

reverse wave must be ignored. For example, the investigation of

73 shows that no wave can travel backwards from a disturbance

which runs along a stretched cord. But Stokes, in his paper on the

Dynamical Theory of Diffraction, of the introduction to which the

above quotation forms part, has shown from purely dynamical prin-

ciples, that the disturbance in a secondary wavelet is a maximum
in the direction of the wave-normal, and that it diminishes constantly

as the direction considered is inclined more and more to the normal,

ultimately becoming zero in the direction opposite to" that in which

the primary wave travels. He then shows that the result of the

superposition of all the secondary effects is the same as if the wave

(assumed to be practically plane, i.e., of radius which is large in

comparison with the wave-length, a condition always satisfied in

experiment) had not been supposed to be broken up into a series of

separate centres of disturbance, and that no back-wave is pro-

pagated.
226. Effect of a Rectilinear Wave. We have already stated that

Fresnel showed that Huyghens' principle, according to which the

new wave front is found to be the envelope of the secondary wave-

fronts, should be explicitly associated with the principle of inter-

ference if it is to give a complete explanation of the rectilinear pro-

pagation of light. The envelope is the locus of points each of which

is simultaneously reached by more than one secondary disturbance

the phases of which are identical. It is, therefore, the locus of

points at which the light has great intensity.

The necessity for the introduction of the principle of interference

will appear very evidently from the following investigation of the

effect of a rectilinear wave at any external point.

Let AB (Fig. 134) represent a portion of a linear wave which
extends to infinity in both directions, and let P be the point at

which we have to determine the effect of the wave. Draw PM
perpendicular to AB and take points m, mr

, m", etc., such that

Pra PM=Pm' Pm=Pm"-Pm'= etc., = X/2, where X is the wave-

length of the light emitted from the various points of AB.
The length of the half-period element Mm is J
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where a, is the length of PM. When X is so small in comparison
with the other length involved that it may be neglected, this

becomes ^/a\. Similarly Mm', Mm", etc., are respectively equal to

M

FIG. 134.

v/3X, etc. Hence the lengths of the successive half-period

elements, from M outwards, are *Ja\, ^/a\ ( */%
-

1), */a\ ( *J3 ^/2),

etc., and the limit to which they ultimately approach is X/2.

If we divide each element into the same number of infinitesi-

mal portions, the light sent out by the first portion of the first

element differs in phase from that emitted by the first portion of

the second element by one half of a period. Similarly, the light

emitted by the second portion of the first element differs in phase by
one half of a period from that emitted by the second portion of

the second element, and so on. Now the effects at P of the various

parts of the first element are not quite compensated by the effects

of the corresponding parts of the second element. For the breadth

of the parts of the first element is rather greater than that of the

parts of the second ; and the inclination of each part to the line

joining it to P, and also its distance from P, increase as the part

is more remote from M. But the difference between the effects of

the corresponding portions of the ri
k and the n+Vk elements is

vanishingly small when n is large.

Now, as X is a very small length it follows that a very large

number of half-period elements are included in a small portion of

AB in the near neighbourhood of M, and, consequently, only a

small part of the wave near M produces any effect at P. Hence, a

small opaque object placed on the line PM would entirely prevent

the wave AB from producing any effect at P.

Hence the propagation of light is practically rectilinear when X is
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so small that its square may be neglected in comparison with the

other quantities involved.

Let e
2 ,

<?2 ,
e*c - be the effects at P of the first, second, etc., half-

period elements of MB. The total effect (taking account also of the

portion MA) is

2(ei
-
6^+63

- e
4+ ...... - e n + ..... ) .

These various terms are in descending order of magnitude, and

therefore it appears that the total effect is smaller than the effect of

the first half-period portions at M.

The difference between any two successive terms is small in com-

parison with the magnitude of either, and so, writing the above

expression in the form

we see that the total effect at P is approximately equal to the effect

of one half-period element at M.

227. Effects of Plane and Spherical Waves. Let the plane of

the paper represent a plane wave, the effect of which at a point, P,

is to be found, and let M (Fig. 135) be the foot of the perpendicular

drawn from P to the plane.

FIG. 135.

From P as centre describe successive spheres of radii MP+X/2,
MP+2X/2, etc. The spheres will divide the plane wave into con-

centric zones, called half-period zones, or, sometimes, Huyghens'
zones.

Dividing each of these zones into the same number of infinitesi-

mal annular portions, we observe that the effect of each portion of

one zone is nearly annulled by the effect of the corresponding por-

tion of the succeeding zone, and that the annulment is practically

complete at a short distance from the point M precisely as in the

similar investigation of last section. Hence the effect produced at

17
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P is that due to a few half-period zones in the neighbourhood of the

wave-normal which passes through P, and is practically equal to

half the effect of the first zone.

Let AMB (Fig. 136) represent a spherical wave diverging from O.

FIG. 136.

To find the effect at P we must, as above, divide AMB into half-period

zones surrounding M the point in which OP intersects AB.

Reasoning similar to the foregoing shows that the effect of the

wave at P is equivalent to half of that produced by the first zone.

Now it is easy to see that the phase of the vibration due to the

first zone differs from that due to the secondary wave at M by one

quarter of a period. For if OM be large in comparison with the

wave-length a condition which is satisfied in all experimental
observations the first zone is practically plane. And, further, if it

be broken up into 2n infinitesimal rings, of equal area, surrounding
the point M as centre, the amplitudes of the vibrations produced
at P by each of these annular portions will be practically equal to

one another. Hence
( 52) the phase of the resultant of the effects

of the 1" and the 2n'
A annuli is halfway between those of its com-

ponents. This is true also of the phase of the resultant of the

effects of the 2"
rf and the (2n 1)'* annuli, and so on. But the phase

of the vibration at P due to each annulus varies uniformly from the

1" to the 2wM annulus. Therefore the phase of the resultant vibra-

tion at P due to the complete zone is one-quarter of a period behind

that due to the vibration at M. The same statement must be true

of the vibration produced by the whole wave if it agrees in phase
with that produced by the first zone.

228. Diffraction at a Straight Edge. We are now in a position

to determine the effects produced by any given portions of a wave
which diverges from a luminous point the remaining portions

being intercepted by opaque obstacles. This involves the carrying
of our investigations beyond the stage in which the wave-length

may be assumed to be small in comparison with all other quantities
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involved. We shall find that, under this new condition, light is no

longer propagated in straight lines, but is bent, or diffracted, into

the geometrical shadows precisely as sound is.

AMB (Fig. 137) represents a spherical wave, which, diverging from

the point 0, is partially intercepted by an opaque object MN. We
have to determine (1) the effect at any point P outside the geo-

B

FIG. 137.

metrical boundary, OMC, of the shadow ; (2) the effect at any point

inside Q the geometrical shadow.

Join OP and MP, and let OP meet AB in ra.

WhenmM contains a considerable number of half-period elements,

the wave produces practically its full effect at P. Let elt e2 , etc., be

the effects of the first, second, etc., half-period elements in the

neighbourhood of m ; and let E be the effect of the semi-wave

raB. The effect at P is E, E+el5 E }-e1
- e

2 , etc., according as the

number of elements included in mM is 0, 1, 2, etc. Hence the

effect at P is a maximum, or a minimum, according as mM contains

an odd, or an even, number of half-period elements ; that is, accord-

ing as, in the formula

n is odd or even. When n and A are given, the locus of P is a

hyperbola the foci of which are and M. Now, if we denote PC by
and MP=x, OM by a, and MC by 6, we get

&2
-f-#

2
' These expressions give approximately

and MP = 6-f #
2
/26. Hence the above formula becomes

At a point Q, within the geometrical shadow, the most effective

172
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portions of the wave are intercepted by. the obstacle. The effect at

Q is practically \e*, \e^ etc., according as MN intercepts 1, 2, etc.,

of the most powerful elements. Hence the illumination inside the

geometrical shadow dies away as the distance of the illuminated

point from the geometrical boundary increases.

Diffraction fringes, resembling those just described, appear out-

side the geometrical shadow on both sides of a narrow obstacle,

such as a thin wire or a hair. But, in addition, a series of finer bands,

of constant breadth, make their appearance inside the geometrical
shadow if the obstacle is sufficiently narrow. These are caused by
interference of the light diffracted at both sides of the obstacle, for,

as we have seen, the effect of each unintercepted portion of the

wave is practically the same as that of a luminous line placed close

to the straight edge of the obstacle.

229. Diffraction at a Narrow Slit. Let MN (Fig. 138) represent
a narrow opening in an opaque obstacle, and let a wave AB
diverge from a point O, which is situated on the line drawn from the

middle point of MN at right angles to the plane of the obstacle.

FIG. 138.

Reasoning similar to that of last section shows that the illumina-

tion at a point P will be a maximum, or a minimum, according as

MN contains an odd, or an even, number of half-period elements.

Let M'N' be the geometrical projection of MN. If the screen,

PM'N', be so far from MN that NM'-MM' (or MN'-NN') is less

than a semi-wave-length, a fringe of alternately bright and dark

bands will appear on each side of the geometrical projection of

MN. But if the distance between the obstacle and the screen be so

small that NM' - MM' is greater than a semi-wave-length, bands

will appear between M' and N'.

230. Diffraction at a Circular Aperture. Zone Plates. Draw
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the line OP (Fig. 139) through the centre of the aperture and per-

pendicular to its plane. We shall determine the general effect at

P of light diverging from 0.

FIG. 139.

The illumination at P is a maximum, or a minimum, according

as MN contains an odd, or an even, number of half-period zones.

Let a be the centre of the aperture, and let b be the outer edge of

the nth zone. Denote the lengths of Oa, #P, and ab by u, v, and x

respectively. We get approximately

and

therefore

Hence

But this length is equal to w\/2, and so

Thus the consecutive values of x are proportional to the square
roots of the natural numbers.

As P approaches MN, the number of half -period zones in the

aperture increase, and so the illumination at P passes through a

succession of maxima and minima. The various points at which
the maxima and minima occur are given by the expression

ur2

v = 9un\ r2

where r is the radius of the aperture.
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From the way in which X is involved, it is evident that the

position of P corresponding to maximum illumination approaches
nearer to the aperture when the wave-length increases

;
so that an

eye, which advances to the aperture along Pa, will perceive a rapid

periodic variation in the colour of the light which reaches it.

If, as formerly ( 228), we denote by e1} e2 , etc., the effects of the

light which passes through the successive half-period-zones, the

total effect is

The effect will therefore be much greater than it otherwise could

be if the even zones be made opaque. Such an arrangement con-

stitutes a zone plate. If n be the number of zones (alternately

open and opaque) in a zone plate of radius r, the formula

1 l_nX
u v~ r'

2

shows ( 193) that the plate acts as a condensing lens, the principal
focal length of which is r2

/nX. But, in the case of the zone plate,
all rays do not take the same time to pass between the conjugate
foci

; and, further, the focus for red rays is nearer to the plate than
the focus for blue rays is. In these points it differs from a lens.

231. Diffraction at an Opaque Disc. A point at the centre of

the geometrical shadow is almost as brightly illuminated as if the

disc were removed. If this disc removes n - 1 half-period zones,
the effect of the remaining zones is practically equal to one half of

that of the wth zone. But, so long as n is not large, the effect of the

wth disc is not greatly different from that of the first. This theo-

retical result was first pointed out by Poisson, and was verified

experimentally by Arago.
232. Coronce. Young's Eriometer. If a number of very small

and nearly equal particles be closely distributed in the space inter-

vening between a luminous object and the eye, the object will appear
to be surrounded by luminous rings. These are due to diffraction of

the light which passes the edges of the particles. The coronce, which
are sometimes seen surrounding the sun or the moon, are caused by
the presence of small globules of water in the atmosphere. They
are coloured blue inside, red outside, and increase in size when the

diameters of the globules diminish. [If, therefore, the corona3 are

observed to contract, the moisture in the atmosphere is condensing,
and rain may be expected to follow ; conversely, if the rings dilate,

dry weather will in general ensue.]

Young's Eriometer was devised for the purpose of measuring the
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diameters of small objects. It consists of a metal plate, in which a

small hole is drilled. The plate is also perforated by a circle of still

smaller holes which surround the large hole as a centre. A flame is

placed behind this plate, and the light which passes through the

holes is examined through glass plates which contain between them
the (equal) particles the size of which is to be determined. The large

opening in the metal plate is surrounded by coloured rings, and the

distance between the metal plate and the glass plates is altered until

any one particular ring coincides with the circle of small holes.

This distance varies inversely as the radius of the ring, which itself,

as we have just seen, varies inversely as the diameter of the

particles. One experiment, in which the diameter of the particles

is known, and the distance between the plates is measured, is

sufficient to enable us to calculate the unknown diameters of other

sets of particles.

233. Diffraction Gratings. A diffraction grating may consist of

a glass plate, upon which a great number of extremely fine equi-

distant parallel lines are ruled by means of a diamond point. The

grooves are practically opaque, for light incident on them is reflected

back in all directions. On the other hand, the glass between the

grooves is transparent, and the light which passes through is

diffracted in all directions.

Let AB (Fig. 140) represent a (highly-magnified) portion of the

grating, the dark parts indicating the grooves, and the light parts

indicating the intervening spaces ; and let aP and 6P represent the

FIG. 140.

paths of rays which reach P from similarly-situated parts of the

openings a and 6. From a drop a perpendicular am upon 6P.
The distance ab being very small in comparison with the distance
of P from the grating, bm is practically equal to 6P - aP.
Now suppose that parallel rays from a narrow slit parallel to the

grooves fall perpendicularly upon the grating. An eye placed at P
will see the slit through the grating in the direction PQ. The
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angle bam is equal to the angle aPQ( = 0, say) ; and so bm= ab sin0.

Therefore a maximum or minimum effect will be produced at P

according as n is even or odd in the expression

The length ab is known, since it is the reciprocal of the number
of grooves ruled in unit breadth of the grating.

If monochromatic light be used, a series of coloured images of

the slit will be seen at different angular distances from the line

PQ. If white light be used, a series of spectra will be observed, in

each of which the violet light is less bent from its original direction

than the red light is. The spectra are said to be of the first, second,

etc., order, according as n has the values 1, 2, etc. All the spectra

beyond the second partially overlap each other.

Very accurate measurements of wave-length may be made by
means of the grating ; and the spectra obtained from all gratings

are identical, except as regards scale ; that is, there is no trace of

irrationality in the dispersion ( 197). And, further, if 9 is nearly

zero, the dispersion between any two rays is practically proportional

to the difference of their wave-lengths. This condition may be

attained by inclining the grating to the direction of the incident

light at a suitable angle. The spectrum thus produced is called

a normal spectrum.
Diffraction spectra may be obtained by reflection from a ruled

metallic surface. Eowland's concave gratings are ruled on the

polished surface of a portion of a cylinder of speculum metal.



CHAPTEE XIX.

DOUBLE REFRACTION. POLARISATION.

234. Double Eefraction. In our consideration of the refraction of

light, we have hitherto dealt only with those cases in which a single

refracted ray occurs.

Bartholinus, in 1669, described the phenomenon of double refrac-

tion as observed by him in Iceland spar.

A single ray of light incident upon the surface of Iceland spar in

general gives rise to two refracted rays. One of these obeys the

ordinary law of refraction, but the other follows a totally different

law. The former is called the ordinary, and the latter the extra-

ordinary, ray.

All crystalline minerals, except those belonging to the cubic

system, possess the property of double refraction.

The fundamental form in which Iceland spar crystallizes is the

rhombohedron. The angles of the faces are either acute or obtuse.

The obtuse angles are all equal to each other, and the acute angles

are all equal also. Two of the solid angles (A and B, Fig. 141) of the

rhombohedron are bounded by three obtuse angles. All other angles,

such as C, are bounded by one obtuse and two acute angles. The

axis of the crystal is a line which is equally inclined to the three

edges meeting at an obtuse-angled corner. If we make all the

edges of the block equal in length, the crystalline axis will be AB,
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the diagonal joining the two obtuse-angled corners. A plane ACB,
which passes through the crystalline axis and the shorter diagonal
AC of. a rhombic face, is called a, principal section of the crystal.
In Iceland spar, and in many other crystalline substances, all the

optical properties are symmetrical about the axis of form. Any
direction in such a substance, which is parallel to the axis of form,

is, therefore, called the optic axis ; and all such substances are

called uniaxal crystals.
If the spar be cut by a plane in any direction, and a ray of light

falls upon the surface so formed, both an ordinary and an extra-

ordinary ray will in general be produced ; and, in most cases, the

latter will not lie in the plane of incidence. But if the plane be

perpendicular to the optic axis, both rays coincide if the incidence

is normal. This also occurs if the optic axis lies in the refracting

surface, and the incidence is normal ; and, further, in this case the

extraordinary ray obeys the ordinary law so long as the plane of

incidence is perpendicular to the optic axis.

These various phenomena were investigated very fully by

Huyghens, and he was led to adopt a construction for the wave-front

in the interior of the crystal which he himself proved experiment-

ally to accord very accurately with the observed facts. More severe

tests of his construction were made by Wollaston in 1802 ;
and

recently Stokes, Mascart, and Glazebrook have verified its accuracy
to the full extent attainable by modern methods of measurement.

235. Huyghens^ Construction. Huyghens had previously ex-

plained the propagation of light in homogeneous isotropic media by

FIG. 142.

the assumption that the wave-surface was spherical ( 186, 200).

To explain double refraction in uniaxal crystals, he assumed that

the wave-surface consists of an ellipsoid of revolution the axis of

symmetry of which is coincident with the optic axis, and a sphere
which touches the ellipsoid at the extremity of its axis of symmetry.



LIGHT : DOUBLE REFRACTION, POLARISATION. 267

The spherical portion of the surface corresponds to uniform speed of

propagation in all directions ; and the incident ray being given?

we can determine from it, by the method of 200, the direction

of the ordinarily refracted ray. The ellipsoid indicates unequal

speed of propagation in different directions, and from it we can

determine the direction of the extraordinarily refracted ray by a

similar process.

Let (Fig. 142) be the point at which an incident ray AO meets

the surface OQ, and let BPQ be another ray parallel to AO, so that

OP, which is perpendicular to both, may represent a portion of a

plane wave-front. In the time in which light moves from P to Q,

the ordinary ray will have passed over a distance OB, such that PQ =

juOB, where p is the ordinary index of refraction. A plane through

Q, perpendicular to the plane of incidence, will touch a sphere drawn
from with radius OB in a point B, and OB is the direction of

the ordinary ray. The plane BQ is the ordinarily refracted wave-

front.

If 00 is the optic axis, the radii of an ellipsoid OS, which has

00 as its semi-diameter of revolution, will represent the speeds of

propagation of the extraordinary ray in different directions. A
plane passing through Q, and perpendicular to the plane of inci-

dence, will touch OS in a point S such that OS is the direction of

the extraordinary ray ; and the ratio PQ/OS is equal to /*', the index

of refraction for all extraordinary rays which pass through the

crystal in the direction OS.

In Iceland spar, OC is the shortest radius of the ellipsoid ;
in

quartz it is the largest radius. All crystals which resemble Iceland

spar in this respect are called negative crystals ;
those which resemble

quartz are called positive crystals. In the former, the extraordinary
index is less than the ordinary; in the latter, the reverse is the

case.

If, in this figure, the point C lies out of the plane of the paper, the

point S will in general lie outside it also ; that is, the extraordinary

ray will not be in the plane of incidence. This will be so even if

the incidence is perpendicular ; for the new wave-front will be a

plane parallel to OQ, and this will in general touch CS in a point

which does not lie in the plane of the paper.
236. Special Sections of the Surface. (1) Let the refracting

surface be perpendicular to the optic axis (Fig. 143). At normal
incidence there is no separation of the two rays ; but, as the angle
of incidence increases, the extraordinary ray separates out farther

from the normal than the ordinary one does. If the plane of

incidence be rotated around OC, the two rays each maintain a
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fixed inclination so long as the angle of incidence remains con-

stant.

FIG. 143.

(2) Let the refracting surface and the plane of incidence intersect

in the optic axis (Fig. 144). At normal incidence there will be no

separation of the two rays as regards direction, though the extra-

ordinary ray will travel with greater speed than will the ordinary

FIG. 144.

ray. And, when the angle of incidence increases, the former does

not separate out so far from the normal as the latter does
; for,

from the properties of the ellipse and circle with a common diameter,

R and S lie on a line which is perpendicular to Q.

FIG. 145.

(3) Let the refracting surface contain the optic axis, while the plane

of incidence is perpendicular to it (Fig. 145). The section of the ellip-
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sold becomes a circle, and so the extraordinary ray obeys the ordinary

law, though its index of refraction is less than that of the ordinary

ray. At normal incidence, this case becomes identical with the

last.

237. Polarisation. Huyghens observed that the intensities of the

two beams produced by refraction in a block of Iceland spar are

equal. And he further noticed that each of these beams was in

general subdivided into two others, of unequal intensity, on trans-

mission through a second block.

When the principal sections of the two blocks are parallel, no

more than two beams are produced : the ordinary ray in the first

block passes through the second, without change of direction, as an

ordinary ray ; and the extraordinary ray passes through also with-

out any change. And, when the principal sections of the blocks are

at right angles to each other, two rays only are transmitted ; but the

ordinary ray in the first block passes through the second as an extra-

ordinary ray, while the extraordinary ray in the first becomes an

ordinary ray in the second. In all other relative positions of the

two principal sections, each ray in the first is subdivided into two
in the second. As the second block is turned round from the

position in which its principal section was parallel to that of the

first, the two original beams gradually diminish in intensity as the

intensities of the newly-produced beams increase. When the prin-

cipal sections are inclined at an angle of 45 to each other, all the

four rays are equally intense. The changes then proceed in the

same direction until the inclination of the principal sections is 90,
when the original beams vanish ; after this, if the inclination be

still further increased, the changes proceed in the reverse order

until, at 180, the beams again pass unchanged through the second

block.

Huyghens remarked that the rays which had passed through the

first block seemed to have acquired some form or disposition
which led to the production of these phenomena. Newton spoke of

them as possessing sides. But it was not until more than a cen-

tury afterwards that a complete explanation was found as the result

of an accidental discovery.

Malus, happening to examine through a doubly refracting prism
the light reflected from the windows of the Luxembourg Palace,
observed that each ray alternately disappeared as he rotated the

prism through successive angles of 90. He said that the light was

polarised ; for, favouring the corpuscular theory, he concluded that

the corpuscles possessed poles, which gave rise to the observed
effects. (The plane of reflection of the polarised light is called the
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plane of polarisation.} Extending his investigation, he found that

the light which is reflected from the surface of any transparent

medium, at definite angles (called the angles of polarisation) which

depend upon the nature of the medium, exactly resembles one of

the beams which have passed through a doubly reflecting sub-

stance.

The reflected light has the same properties as the ordinary ray in

Iceland spar has if the plane in which it is reflected is parallel to

the optic axis of the spar ; it manifests the properties of the ex-

traordinary ray if its plane of reflection is perpendicular to the

axis.

The supporters of the undulatory theory at first regarded the

vibrations as taking place in the direction in which the waves

travelled, but the phenomena of polarisation cannot be explained on

this assumption. In particular, the conditions which are essential

to the production of interference of polarised light ( 247) necessitate

the assumption that the vibrations take place perpendicularly to the

direction of the ray.

Hooke, in 1672, had suggested that the vibrations occur in direc-

tions which are perpendicular to the ray ; but the idea was never

developed until its truth was inferred by Young and Fresnel, inde-

pendently, not long after Malus had discovered that light was

capable of undergoing polarisation by reflection.

A ray of light in which the vibrations of the ether all take

place in one common direction, evidently possesses
l

form' or ' dis-

position^ or '
sides.'' Think, for example, of a stretched cord placed

between two smooth parallel planes which just touch it. Waves
in which the vibrations are parallel to these planes can pass along
the cord

; perpendicular vibrations are incapable of existing. The

waves possess
' sides ' which are in, and perpendicular to, the planes

which confine the cord.

238. Laws of Polarisation by Reflection and Refraction. (1)

Brewster's Law. Brewster made an elaborate series of investiga-

tions on the angles of polarisation of various substances, with the

object of connecting the phenomenon with other optical properties

of the substances. He found that the index of refraction is equal
to the tangent of the angle ofpolarisation.
From this law we can at once deduce the relation cos i=sin r,

when i and r are the angles of incidence and refraction. Hence,

the refracted ray is perpendicular to the reflected ray.

Since the refractive index varies with the wave-length, rays of

different colours are polarised at different angles.

Jamin has found that the polarisation is not quite complete
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except in some substances the refractive index of which is about

1-46.

(2) Arago's Law. The light which is refracted into a transparent

medium is polarised to a greater or less extent. Arago found that

the quantity of polarised light in the refracted beam is equal to

the quantity in the reflected beam, and the planes ofpolarisation

of the two are at right angles to each other.

Brewster's Law is applicable to reflection in the interior of a dense

substance. Hence part of the unpolarised light in the refracted

beam will undergo further polarisation when it is reflected at the

second surface of the substance. If a sufficient number of parallel

reflecting surfaces, such as those of a number of thin plates of glass

placed one behind the other, be provided, the incident light may be

divided into a reflected and a, refracted beam, each of which is

totally polarised in a plane at right angles to the plane of

polarisation of the other. This arrangement constitutes a '

pile of

plates.'

(3) Mains's Law. Light, which is incident at the polarising angle
on a plane reflecting surface, is totally unaffected, as regards inten-

sity, by a second reflection from a parallel plate of the same sub-

stance. But, if the plane of incidence upon the second plate be

perpendicular to the plane of reflection from the first, the reflected

beam will be totally extinguished. This subject was fully investigated

by Malus, who found that the intensity of the twice-reflected beam
is proportional to the square of the cosine of the angle of inclina-

tion of the two planes of reflection.

239, Direction of Vibration in Polarised Light. The reflected

ray, which (according to definition) is polarised in the plane of

reflection, has symmetry with regard to that plane, since its inten-

sity is totally unaltered by any number of reflections in that plane.
It has also symmetry with regard to the normal to the plane of

reflection, since it vanishes on reflection in any plane which passes

through this normal.

We may therefore assume either that the direction of the vibra-

tions in polarised light is perpendicular to the plane of reflection, or

that it lies in the plane of reflection. Fresnel, in his theoretical

investigations, made the former assumption; Maccullagh and
Neumann adopted the latter.

The truth of the former is indicated by a number of considera-

tions.

The vibrations of the ordinary ray in Iceland spar will be perpen-
dicular to the optic axis provided that the vibrations of a ray
polarised by reflection are perpendicular to the plane of polarisation ;



272 A MANUAL OF PHYSICS.

and thus the uniform speed of that ray, in all directions, is readily
accounted for. But, on the alternative assumption, the pro-

perties of the ordinary ray would be exceedingly difficult of explana-
tion.

The ordinary and extraordinary rays produced by transmission

through certain crystals, such as tourmaline, are coloured. "When

the two rays pursue nearly the same paths, identical colours are

exhibited in each ;
and this occurs when the two rays traverse the

substance nearly in the direction of the optic axis, so that their

vibrations are nearly perpendicular to it. As the rays separate out

from the axis, the colour of the ordinary ray remains constant, while

that of the extraordinary changes greatly. Haidinger remarked that

this favours the assumption that the vibrations of the ordinary ray
are normal to the optic axis, and therefore take place along the

normal to the plane of polarisation.

If a horizontal beam of polarised light, the vibrations of which

are in lines inclined at an angle a to the vertical, falls perpendicularly

on a diffraction grating, the lines of which are vertical, the direction

of vibration in the diffracted beam will make with the vertical an angle

j3, which differs from a. Let a be the amplitude of the incident

vibration. The resolved part of it parallel to the lines of the grating

is a cos a ; and the part at right angles to this is a sin a. If the

diffracted beam makes an angle with the normal to the grating,

the part of a sin a, which is perpendicular to the diffracted beam, is

a sin a cos 0, and it is this part alone which is effective in the propa-

gation of light. Hence the tangent of the angle which the new
direction of vibration makes with the lines of the grating is

tan J3
= a sin a cos <j)ja cos a= tan a cos 0. The angle /3 is therefore

less than a. Consequently, if the plane of polarisation is perpendi-

cular to the direction of vibration, the plane o^f polarisation of the

diffracted beam will be more nearly perpendicular to the lines of the

grating than that of the incident beam ;
and the reverse will happen

if the direction of vibration lies in the plane of polarisation.

This result was deduced from theory by Stokes. He also tested it

experimentally, and found that the result seemed to support

Fresnel's assumption.
Another test, also due to Stokes, is based upon the nature of the

polarisation of light which has undergone reflection from very small

material particles.

Stokes remarks that no conclusion can be drawn so long as the

particles are large compared with the wave-length of light, for then

reflection occurs as it would from the surface of a large solid ; but,

when the particles are small compared with the wave-length, it
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seems plain that the vibrations in the incident and the reflected rays

cannot be at right angles to each other.

The small particles with which he experimented were obtained by

highly diluting some tincture of turmeric with alcohol and adding
water. A horizontal beam of sunlight fell upon the particles, and

the light was found to be polarised in the plane of reflection. The

smaller the particles were, the greater was the tendency to complete

polarisation in the plane of reflection.

Since the ' sides
'

of the reflected ray are symmetrical with

respect to the plane of polarisation, its vibrations must either be

parallel to the incident ray or perpendicular to the plane of reflec-

tion, i.e., of polarisation. We must therefore choose the latter

alternative, since we cannot suppose that the directions of vibration

in the incident and the reflected rays are at right angles to each

other. (See, further, Chap. XXXIII.)
240. Reflection and Refraction of Polarised Light. Young

first determined the relations existing amongst the intensities of the

incident, the reflected, and the refracted beams when light falls

perpendicularly upon the bounding surface of two transparent
media.

Fresnel, starting from certain assumptions, gave a complete

investigation of these relations for all angles of incidence.

He assumed, first, the conservation of vis viva (or energy) ; second,

continuity of displacement of the particles of the ether at either

side of the bounding surface
; third, proportionality of the density

of the ether in a given medium to the square of the refractive

index of that medium.
The third assumption implies that the rigidity of the ether

(regarded as possessing properties analogous to those of an elastic

solid) is the same in any two media. For the refractive indices are

inversely as the speeds of propagation of light in the two media, and
therefore the densities are inversely as the squares of the speeds.
But

( 168) the squares of the speeds are in direct proportion to the

ratios of the rigidity to the density of each medium, from which
it follows that the rigidity of the ether in each must be the same.

Let us suppose that light, polarised in a plane which makes an

angle 9 with the plane of incidence, is reflected from a transparent

surface, and let a be the amplitude of its vibrations. The resolved

parts of this parallel, and perpendicular, to the plane of incidence

are a sin 9 and a cos 0, respectively. For shortness, let us denote

these by_p and q ;
and let p' and q' denote the similar portions of

the amplitude of the reflected ray, while m and n represent the

similar portions of the refracted ray.

18
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The fact of conservation of energy is expressed ( 161) by the

equations

vp cos i (p
2
-p'

2
)
=

y'p' cos r . m2
, (1)

vp cos i
(<z

2
q'

2
)
=

v'p' cos r . n2
, (2)

where p and p' represent the densities of the ether in the media.

But, by Fresnel's third assumption, we have

p'_sin
2
i_v^

p sin2 r v''^

whence (1) and (2) become respectively

p
2 y2=m2 tanicotr (3)

q'< q'
2=n2 tani cot r (4).

The continuity of the displacement, in the case of vibration

parallel to the surface, necessitates the condition

'=n; (5)

while, in the case of the vibrations which take place in the plane of

reflection, it necessitates the condition

(P -\-p') cos i=m cosr (6).

Combining (3) and (6), (4) and (5), we obtain

,
sin ft -r) ,,

q q , .

,

s (i )>

20 cos i sin r /ox*- ^nlFHT (8) '

y=-*ssl- -^

%p cos i sin r
(10).

sin ft+r)cosft-rf
'

If 0=0, so that the incident light is polarised in the plane of

incidence, and if the incidence is perpendicular, (7) shows us that

the ratio of the intensity of the reflected, to that of the incident,

light is
,

^'
2

_sin
2
(i~r}__ /i r\ z

_ //i--l\
2

The same equation shows that, when i= 90, the whole of the

incident light is reflected,
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Again, by (8), when = 0, ^= 0, we see that the intensity of the

refracted light bears to that of the incident the ratio

n* _( 2?- V8 / 2 \ 2

~*\i+r)
~

+ l/
'

Similar expressions may be obtained from (9) and (10). All these

results have been verified experimentally.

Let the plane of polarisation of the reflected light make an angle

tf> with the plane of incidence. From (7) and (9) we get

- = tan 8 .

q' qcos(ir) cos (i r)

Hence the plane of polarisation is rotated by reflection so as to more

nearly coincide with the plane of incidence. The angle is equal to

at perpendicular incidence ; and it diminishes as i increases, until

when i+r= 90 i.e., at the polarising angle it becomes zero.

When i increases beyond this value, becomes negative ; and, at

grazing incidence, 0= -9. So long as and Q have the same sign,

the difference of phase of the two components of the reflected vibra-

tion is zero : at the polarising angle the difference changes suddenly
to TT.

If $ be the angle which the plane of polarisation of the refracted

light makes with the plane of incidence, (8) and (10) give

^ = - sec (i
-

r) = tan 9 sec (i r).tan

The rotation of both the planes of polarisation may be increased

by successive repetitions of the same process. Since sec (ir) =
sec (r-i), refraction through a parallel plate gives tan 1^2

=
tan 9 sec 2

(i-r).

Equations (5) and (6) above express the condition that there shall

be continuity of displacement of the ether parallel to the bounding
surface. No account has been taken of the displacement perpen-
dicular to the surface. If we replace Fresnel's assumption of

uniform rigidity by the condition of no normal discontinuity, we
find p

=
p'. Hence Fresnel's third assumption is inconsistent with

normal continuity of displacement.

Making the assumption that the ether is of uniform density in all

media, Maccullagh and Neumann deduced expressions for the ampli-
tudes of the components of the vibration of the reflected ray, in

which the quantities on the right-hand sides of (7) and (9) are

182
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simply interchanged. Hence, on this theory, we must assume that

the vibrations are in the plane of polarisation. A similar interchange
occurs in the expressions for the components of the vibration in the

refracted ray ; and, in addition, the magnitudes are altered. But
this alteration occurs in such a way that the amplitude of vibration

in the first medium, after refraction through a parallel plate, is

identical on both theories. And, further, the rotations of the

planes of polarisation are of the same magnitude and sense on the

two theories. Therefore none of the phenomena with which we are

now dealing are capable of furnishing a test between the assumptions
of uniform density and uniform rigidity.

241. Plane, Circular, and Elliptic Polarisation. In the special

examples considered in last section, the difference of phase of the

two rectangular components of the resultant vibration was or ?r.

But the resultant of two rectangular simple harmonic motions is, in

general ( 52), elliptic motion. Not only is this true of two rec-

tangular components ; it is true of any number of simple harmonic

components in lines inclined at any angles to each other.

Hence, if we can assume that the vibrations of a particle of the

ether are simply harmonic when polarised light (such as we have

hitherto considered) is passing, we must conclude that the most

general vibration of such a particle, when subject to various simul-

taneous disturbances, is elliptical. This assumption is justified by
the fact that no phenomena of light, which are not due to simple

superposition of displacements, are observed.

The resultant elliptic path is described continuously so long as

the amplitudes, phases, and periods of the components remain con-

stant. In this case the light is said to be elliptically polarised.

As a particular case, when all the components can be compounded
into two rectangular components, equal in amplitude and period, but

differing in phase by 7r/2, the ellipse becomes a circle, and the light

is circularly polarised.

Ordinary polarisation for example, that produced by reflection

occurs when the components can be reduced to two which differ in

phase by any multiple of TT. This is usually termed plane polarisa-

tion, in order to distinguish it from the above forms.

242. Nature of Common Light. Common light exhibits no trace

of polarisation of any description. But this is known to be true

also of plane polarised light if its plane of polarisation be made to

rotate very rapidly so rapidly that, in little more than one-tenth of

a second, the directions of vibration have been distributed uniformly

in all possible orientations perpendicular to the ray. Hence we

may conclude that ordinary light consists of elliptically polarised
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light, the magnitude, form, and position of the ellipse being in a

constant state of rapid change.

But the phenomena of interference of light show that practically

no change occurs in the course of some thousands of vibrations, for

many thousands of interference bands can be counted when homo-

geneous light is used. On the other hand, since light travels at .the

rate of 186,000 miles per second, while the length of a wave is, on

the average, about one forty-thousandth part of an inch, many
millions of millions of vibrations must take place per second. But,

again, as Stokes has pointed out, from the facts that every source of

common light consists of a practically infinite number of points, and

that the light emanating from each of these points is, in general,

totally independent of that issuing from any other in respect of

direction of vibration and also in respect of phase, we cannot expect

anything else than an average effect in which there is no manifesta-

tion of '

sides.'

It follows that a beam of common light must necessarily be

divided into two beams of equal intensity when it is transmitted

through a doubly refracting substance.

From the formulae (7) and (9) of 240, we see that the total

intensity of the reflected portion of a beam of unit intensity which
falls on a transparent substance is

I/sin2
(i-r) tan2

(i r)\

2Vsin2
(i+r)

"*~ tan2
(i+r))'

since the two oppositely polarised parts into which the incident

beam is supposed to be divided are of equal intensity. Now the

second term in this expression is, in general, smaller than the first,

and so, in the reflected beam, there is an excess of light polarised in

the plane of incidence. The second term vanishes when i+ r= 90,
from which it follows that the reflected light is entirely polarised in

the plane of incidence at the polarising angle.

Similarly, we can show that the refracted beam contains an
excess of light polarised perpendicularly to the plane of incidence,
that it is entirely polarised in the perpendicular plane at the polaris-

'

ing angle, and that its intensity is then equal to that of the re-

flected beam. At all angles of incidence there are equal amounts
of polarised light in the two beams.
The known laws of the polarisation of common light by reflection

and refraction are therefore consequences of the undulatory theory.
243. Metallic Reflection. Mains observed that light is never

completely polarised by reflection from the surface of metals, but
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that the polarisation attained a maximum at a certain angle of

incidence. He also observed that polarised light appeared to be

completely depolarised by reflection from a metallic surface when
its plane of polarisation was inclined at an angle of 45 to the plane
of incidence.

Brewster verified, and extended, these results. He showed that

the reflected portion of a beam of common light might be com-

pletely polarised by a sufficient number of reflections under like

conditions a result previously inferred by Biot. He found also

that, when the incident ray is polarised in, or perpendicular to, the

plane, of incidence, the reflected ray is still polarised in the same

plane ; that, when the original polarisation is in any plane other

than these, partial depolarisation seems to take place ; and that the

depolarisation is greatest at the angle of maximum polarisation.

Further, a second reflection, in the same plane, and at the same

angle, repolarises the light ;
and the new plane of polarisation lies

on the opposite side of the plane of incidence and makes a different

angle with it.

The '

depolarisation
' above spoken of does not mean restoration

to the condition of common light. The originally polarised light

may be decomposed into two parts, one polarised in the plane of

incidence, the other polarised in the perpendicular plane. The

amplitudes of these parts may suffer change by reflection, which

( 240) produces a rotation of the plane of polarisation. The phases

may also be altered, and this will give rise to elliptic polarisation.

Jamin's experiments on this subject show that Brewster's '

depo-

larisation
'

is really elliptical polarisation, and also show the nature

of the variations of amplitude and phase.

The laws of change of amplitude are the same as those already

found in 240. The difference of phase increases from perpen-

dicular incidence to grazing incidence by the total amount TT, the

phase of the ray polarised in the plane of incidence being accelerated

with reference to that of the other. The change of phase is ex-

tremely slow, except in the immediate neighbourhood of the angle

of maximum polarisation, between near limits on either side of

which the total change occurs.

The difference of phase ought, according to Fresnel's theory

( 240), to increase suddenly by TT at the polarising angle.

Extending his observations to transparent bodies, Jamin found that

the difference between them and metals is only a difference of degree.

In all cases elliptic polarisation is produced, and the maximum

ellipticity occurs at the angle of maximum polarisation, which co-

incides very closely with the angle deduced from Brewster's law.
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Jamin found that some transparent substances differ from metals

with respect to the sign of the difference of phase which is produced

by reflection. Substances whose refractive index is less than 1'46

retard the phase of the component which is polarised in the plane

of incidence ;
substances which have a refractive index exceeding

T46 resemble metals in accelerating the phase of this component ;

substances in which the refractive index is equal to 1'46 obey
Fresnel's laws.

He also found that, in metals, the angle of maximum polarisation

decreases as the wave-length of the light increases ;
from which we

see that metals, if they obey Brewster's law, must refract light of

long wave-length more than light of short wave-length. Eecent

experiments on refraction through thin metallic prisms seem to

confirm this conclusion.

When light polarised in the plane of incidence is reflected from a

metallic surface, the intensity of the reflected beam is a minimum
at the angle of maximum polarisation. Maccullagh pointed out

that transparent substances, the refractive index of which exceeds

2 + v3, possess (according to his theory) a minimum reflecting

power at a definite angle of incidence.

244. Double Eefraction by Biaxal Crystals. Brewster dis-

covered that most doubly refracting crystals possess two optic axes.

In uniaxal crystals the axis is equally inclined to the three edges
which meet at an obtuse-angled corner of the crystal. In biaxal

crystals the lines which bisect the two angles contained by the axes,

and the line at right angles to these two, have a definite relation to

the crystalline form.

Fresnel has proved, theoretically and experimentally, that neither

of the two rays in a biaxal crystal obeys the ordinary law of refrac-

tion. By means of certain assumptions, he investigated the problem
of the propagation of waves of transverse vibration in a non-isotropic
elastic medium. Crystalline substances are known to be non-

isotropic, and presumably the property is impressed upon the ether

which pervades them, and which is known to be hampered, as regards
its free oscillation, by the presence of material particles.

The complete laws of double refraction may most readily be

studied from the point of view of his theory, which we now
proceed to give.

245. Fresnel's Theory of Double Eefraction. Fresnel under-

took his investigation when the discovery of double refraction in

biaxal crystals made it apparent that Huyghens' construction for

the wave-surface was not applicable in all cases.

In a non-isotropic substance, the resultant force which opposes
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the displacement of a particle does not in general act in the direction

of the displacement. But Fresnel showed that there are three

directions, at right angles to each other, in which the force, called

into existence by the displacement, acts so as to move the particle

directly back to its position of equilibrium. He showed that if,

from any point in the interior of the substance, lines be drawn with

lengths proportional to the square roots of the elastic forces which

resist displacement in the directions in which the lines are taken,

the extremities of these lines will lie on an ellipsoid (called the

ellipsoid of elasticity). The three principal axes of this surface are

in the directions in which the force tends to move the displaced

particle directly back to its undisturbed position.

The speed of wave-propagation in an elastic medium is propor-
tional (cf. 168) to the square root of the elastic force (or distor-

tional rigidity), and hence the radii of the ellipsoid are proportional

to the speeds of propagation of waves when the vibrations are along
the given radii.

Consider a plane wave passing through the medium. Fresnel

proved, from the fact that the intensity of a beam of light which is

compounded of two beams polarised at right angles to each other is

independent of the phase of either component, that the vibrations

must lie in the wave-front. If, therefore, we regard a central

section of the ellipsoid of elasticity by the wave-front, we see that

there are only two directions those of the two axes of the section

in which a displacement will give rise to a reverse force acting in a

plane which is normal to the wave and which passes through the line

of displacement ;
for Fresnel showed that the force acts in the normal

to that central section of the ellipsoid which is conjugate to the direc-

tion of the displacement. In general, the force will have a compo-
nent perpendicular to the wave-front ; but, according to assumption,
this produces no effect in the way of wave-propagation.

Corresponding to any given plane wave-front, there are therefore

only two directions of vibration such that the elastic force developed

by the displacement has an effective component entirely in the

direction of the displacement. But this condition is essential to the

propagation of a permanent wave. Hence a plane wave, incident

upon such a medium, is, in general, broken up into two waves,

which are propagated in different directions with speeds which

are proportional to the radii of the ellipsoid drawn in these

directions.

[The following extract from Stokes' ' Lectures on Light
'

will aid

in the formation of clear ideas on this point :

' Now we have not far to go to find a mechanical illustration of
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such a mode of action. Imagine an elastic rod terminated at one

end, and extending indefinitely in the other direction. Let the rod

be rectangular in section, the sides of the rectangle being unequal, so

that the rod is stiffer to resist flexure in one of its principal planes
than the other. Let this rod be joined on to a cylindrical rod form-

ing a continuation of it which extends indefinitely. Conceive the

compound rod as capable of propagating small transverse disturb-

ances, in which the axis of the rod suffers flexure. Imagine a

small disturbance, suppose periodic, to be travelling in the cylindrical

rod towards the junction. It will travel on without change of type,

even though the flexure of the axis be not in one plane. But to

find what disturbance it excites in the rectangular . rod, we must
resolve the disturbance in the cylindrical rod into its components in

the principal planes of the rectangular rod, and consider them

separately. Each will give rise in the rectangular rod to a disturb-

ance in its own plane, but the two will travel along the rod with

different velocities. This illustrates the sub-division of a beam of

common light falling on a block of Iceland spar into two beams

polarised in rectangular planes, which are propagated in the spar
with different velocities. Again, suppose the original disturbance in

the cylindrical rod confined to one plane. If this be either of the

principal planes of the rectangular rod, the more slowly or the more

quickly travelling kind of disturbance, as the case may be, will

alone be excited in the latter ; and if the plane of the original dis-

turbance be any other, the components into which we must resolve

it in order to find the disturbance excited in the rectangular rod will

in general be of unequal intensity, their squares varying with the

azimuth of the plane of the original disturbance in accordance with
Malus's law. This illustrates the sub-division of a beam of polarised

light incident on Iceland spar into two of unequal intensity polarised
in rectangular planes, and their alternate disappearance at every

quarter of a turn. We see with what perfect simplicity the theory
of transverse vibrations falls in with the elementary facts of

polarisation discovered by Huyghens, standing in marked contrast

in this respect with the conjecture by which Huyghens himself

attempted to account for double refraction.']
In any one direction in the interior of the substance two plane

waves may be propagated, generally with different velocities
;
and

the vibrations in these waves are necessarily at right angles to each
other. But there are two directions in which the speed of propaga-
tion of a wave is independent of the direction of vibration. These
directions are parallel to the normals to the two sets of circular

sections of the ellipsoid of elasticity ; for, all the radii of a circular
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section being equal in length, the same force of restitution is called

into play by a given displacement along any radius.

The resolution of an incident beam into two rectangularly

polarised beams which obey Malus's law, and the existence of two

directions in which a polarised beam is transmitted without modifi-

cation, are therefore consequences of Fresnel's theory.

The planes of polarisation pass through the normal to the wave

and through the major and minor axes of the section of the ellipsoid

of elasticity by the wave. But the lines in which the circular sec-

tions cut the given plane section are equally inclined to the principal

axes. Hence the planes of polarisation bisect the dihedral angles

which are contained by the planes which pass through the normal

to the wave and the optic axes.

The form of a wave which spreads out through the medium from

any centre is formed by the following construction, which is due to

Fresnel: Along the normals to any central plane section of an

ellipsoid, similar to the ellipsoid of elasticity, measure from the

centre lengths which are proportional to the principal axes of the

section. The wave-surface is the locus of the points so found, and

consists of two sheets. The directions of the refracted rays are

found from this surface by Huyghens' construction. The tangent

plane drawn to one sheet gives the direction of the one ray ;
that

drawn to the other sheet gives the direction of the second ray.

The wave-surface possesses symmetry with respect to the three

principal planes of the ellipsoid from which it is derived. Its traces

upon these planes consist respectively of a circle and an ellipse. Let

OA, OE, OF (Fig. 146) be the three principal axes. AB is a circle

of radius OA equal to the mean principal axis of the ellipsoid ;
CD

and EF are circles, the radii of which are respectively equal to the

least and the greatest principal axes. BC is an ellipse, the principal

axes of which are equal to the two least axes of the ellipsoid, and

so on.

When the ellipsoid of elasticity is one of revolution, the wave-

surface consists of two separate sheets a sphere and an ellipsoid

which have one axis in common. Hence Fresnel's theory explains

the double refraction of uniaxal crystals.

It is very desirable to note that Fresnel's results, although they

are all seemingly in complete accordance with observed facts, are

not rigorous deductions from his assumptions. Green and Neumann

proved that a strict investigation, based upon these assumptions,

will lead only approximately to Fresnel's Laws. Green then

deduced these laws as rigorous consequences of an originally more

general theory, the generality of which was subsequently limited by
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imposing a very probable condition ;
but this theory made it neces-

sary to suppose that the direction of vibration is in the plane of

polarisation. He then showed that a still more general theory

would, by means of suitable assumptions, lead to the same laws,

and to the conclusion that the vibrations are perpendicular to the

plane of polarisation. Other theories also give like results; for

example, Maccullagh's theory, which is identical in its results with

Green's first theory. On this point Stokes remarks that the principle

of transverse vibrations is common to all these theories, while

Fresnel's Laws are the simplest which can suit the phenomena ; so

that their mutual agreement can merely be regarded as a confirma-

tion of that principle, while none of the special assumptions made

as to the nature of the luminiferous medium in the interior of

FIG. 146.

crystals can be regarded as being proved solely by the correctness of

the results to which they lead.

246. Conical Eefraction. Sir W. E. Hamilton showed that the

tangent plane QR (Fig. 146) touches the wave-surface at all points
of a circle of contact, so that the point P is a ' conical point.' Four
such points, one in each of the quadrants in the plane EOA, exist.

They are, of course, the four points of intersection of the circle

APB with the eUipse DPE.
The line OQ is perpendicular to the plane QR. But the perpen-

dicular on the plane which touches the wave-surface represents the

speed of propagation of the plane wave to which it is a normal
;
and

the direction of the rays in the crystal are those of the lines joining
O to the point of contact. Hence a plane wave, incident upon the

crystal in such a direction that RQ is its front after refraction,
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gives rise to a cone of rays which proceed in the directions of the

lines joining to the various points of the circle of contact.

Hamilton's theoretical prediction of this phenomenon, which is

known as internal conical refraction, was verified experimentally

by Lloyd.
Both sheets of the surface are touched by the plane KQ, and

hence there exists only one wave velocity in the direction OQ, which

is therefore one of the optic axes. The other optic axis is the image
of OQ in the plane EOF.
An infinite number of tangent planes may be drawn to the sur-

face at the point P, and therefore a ray which proceeds through the

crystal in the direction OP, gives rise on emergence to a thin conical

sheet of rays. This external conical refraction was also predicted

theoretically by Hamilton, and found, as the result of experiment,

by Lloyd.
Since the radii of the wave-surface represents the velocities of the

rays, we see that OP is a direction of single ray-velocity in the sub-

stance, for the two sheets of the wave-surface intersect at the point

P. The other axis of single ray-velocity is the image of OP in EOF.
The axes of single ray-velocity never deviate much from the axes of

single wave-velocity, i.e., from the optic axes.

247. Interference of Polarised Light. The laws of interference

of polarised light were investigated experimentally by Fresnel and

Arago.
Two rays of light, which are polarised in perpendicular planes, do

not give rise to phenomena of interference under circumstances in

which rays of ordinary light would interfere.

The planes of polarisation of two such rays may, by suitable

means, be made to coincide ; but no interference will take place
unless the two rays were originally parts of one polarised

beam.

Eays polarised in the same plane will always interfere under the

conditions in which rays of ordinary light would interfere.

When rays which have been polarised by double refraction pro-

duce interference, the phenomena exhibited are such as to necessitate

the assumption that the phase of one component has been accele-

rated by the amount TT relatively to that of the other. The reason

for this is not far to seek.

Let OP (Fig. 147) represent the vibration in a ray which falls upon
a crystal of Iceland spar the principal section of which is AA'. OP
will be broken up into two components On and Om, respectively

along and perpendicular to the axis. Let each of these be again
resolved in the directions aa' and bb'. The components along aa'
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are in the same phase, but the components along W are necessarily

in opposite phases.

248. Colours of Crystalline Plates. Let us suppose that a beam
of plane polarised white light is obtained by means of reflection,

and let a second reflector be so placed as to extinguish the beam.

If a thin crystalline plate be now interposed between the two

reflectors in the path of the beam, intensely coloured light will in

general be reflected from the second surface.

The light disappears whenever the principal section of the

crystalline plate coincides with, or is perpendicular to, the plane of

reflection from the first surface. If the plate be turned round, in

its own plane, from this position, some reflection from the second

surface will be evident, and the reflected light will vary in intensity,

FIG. 147.

but not in colour, as the plate is rotated. (The same appearances,
colour excepted, would, of course, be manifested even if the plate

were thick.) On the other hand, if the plane of reflection at the

second surface be varied, the crystal being fixed, the colour changes

gradually into the tint which is complementary to the former.

When any two successive positions of the second plane of incidence

differ by 90 from each other, the reflected tints are complemen-

tary.

The colours depend upon the thickness of the crystalline plate,

and vary with the thickness in the same way as the colours seen by
reflection from a thin plate of air.

The explanation of the phenomenon is simple. The originally

plane polarised light is divided in the crystal into two beams, which

are oppositely polarised, and which traverse the plate with unequal

speeds. The phase of the one beam is therefore retarded relatively
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to that of the other, and so interference may take place if the vibra-

tions in the two portions are again resolved in a common direction.

The tint is due to the cutting out of some rays, and the intensify-

ing of others, by interference.

The light which emerges from the plate is elliptically polarised,

since it is compounded of two rectangularly polarised beams which

differ from each other in phase. In particular, when the difference

of phase is any odd multiple of a quarter of a period, the light

is circularly polarised ; and, when the difference is a multiple of

half of a period, the light is plane polarised. If the difference is an

even multiple of a half-period, the plane of polarisation coincides

with the original plane ; it makes an equal angle with the principal

section, on the opposite side, when the difference is an odd multiple
of a half-period.

FIG. 148.

Let POP' (Fig. 148) represent the direction of vibration in the

incident beam of light which falls upon the plane surface P M of

a doubly refracting plate, and let
p, // represent the principal section

of the crystal so that the vibrations in the ordinary ray are in the

direction M. If the amplitude of vibration along P be unity,
the amplitude of the vibrations in the ordinary ray is cos 9, where
9 = P M ; and the amplitude of those in the extraordinary ray is

sin 9. Let v v' represent the principal plane of a second doubly

refracting crystal through which pass both the beams into which the

original beam is divided.

The vibrations along M and ^ give rise to two sets of vibra-

tions along N, the amplitudes of which are cos 9 cos (0 0) and
sin 9 sin (00) respectively, where = P O N. These two vibra-

tions are the components of the vibrations of the ordinary ray which

emerges from the second crystal.
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The vibrations along M and p also give rise to two sets of

vibrations along v, the amplitudes of which are cos 9 sin (0 0)

and sin 9 cos (9
-

0) respectively. And these two vibrations are the

components of the vibrations of the extraordinary ray which emerges

from the second crystal.

The intensity of the ordinary beam is therefore cos2 9 cos
2
(9

-
0)

+ sin2 9 sin2
(9-0) +2 cos 9 sin cos (0-0) sin (0-0) cos 2 TT_'

where I is the effective difference of path of the two rays in the thin

crystalline plate, and X is the wave-length. Similarly, the intensity

of the extraordinary beam is cos2 9 sin2 (9
-

0) + sin2 9 cos
2
(0
-

0)

+ 2 cos 9 sin 9 cos (0-0) sin (0-0) cos 2 vL
\

These two expressions easily reduce to

cos2 - sin 2 sin 2 (0 0) sin2 TT _
,

/Y

and sin2 + sin 2 sin 2 (0
-

0) sin2 TT-
X

When light of various wave lengths is used, the sum of all quan.

tities of the form sin
2

TT lj\ must be taken.

From these expressions we can deduce all the observed effects.

The sum of the two intensities is unity, and therefore the colours

of the ordinary and extraordinary beams are complementary.
The second term in each expression is the quantity upon which

the coloration depends. Hence all colour vanishes when

= or
|,

that is, when the principal section of the crystalline plate is parallel

or perpendicular to the original plane of polarisation. It also

vanishes when

0-0 = or-,

that is, when the principal sections of the thin plate and the

second doubly refracting crystal are parallel or mutually perpen-

dicular. The reason for this is that, in each of these four cases,

one of the components of both the extraordinary and the ordinary

beams necessarily vanishes : and the reason for the colours of

the two beams being complementary is that the difference of the

phases of the components of the extraordinary beam necessarily
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differs from that of the components of the ordinary beam by the

amount ir.

The coloration is greatest when sin 2 9 sin 2 (9 0) is a maximum.
As the maximum value is unity, this necessitates

9= = or

that is, the principal section of the crystalline plate must make an

angle of 45 with the original plane of polarisation, and the prin-

cipal section of the second doubly refracting crystal must be parallel,

or perpendicular, to that plane.

The colours change through regularly recurring cycles as the

quantity Z, and therefore as the thickness of the plate, increases by
successive equal stages.

249. Special Cases. Hitherto we have assumed that the incident

beam of light is parallel. We shall now suppose that a diverging
beam of polarised light traverses a uniaxal crystalline plate the

parallel plane faces of which are perpendicular to the axis.

A ray O P (Fig. 149) which passes perpendicularly through the plate

suffers no change. It will pass through, or be stopped by, a second

plate which is cut parallel to its optic axis according as the principal

FIG. 149.

section of the second plate is parallel to, or perpendicular to, the

original plane of polarisation. Any other ray will undergo change

according to its inclination to the optic axis, and according to the

angle which the plane passing through it and the axis makes with

the plane of polarisation.

Let A B' A' B (Fig. 150) be perpendicular to the axis of the cone

of rays, and let A A' and B B' represent respectively the original

plane of polarisation and the perpendicular plane. All rays which
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emerge from the crystal in these planes will be allowed to pass

through, or will be stopped by, the second plate, according as its

principal plane is parallel, or is perpendicular, to the original plane
of polarisation. The field will therefore exhibit a light or a dark

cross.

(Haidinger's Brushes are observed when polarised light is ex-

amined by the naked eye. The phenomenon consists of two yellowish-

brown patches of light forming a brush the axis of which is parallel

to the plane of polarisation ;
and two other bluish or purplish patches

occur in the angles between the yellow patches. The appearance is

due to a polarising structure which is most highly developed in dark

eyes. It appears that the yellow spots of the eye are doubly re-

fracting and absorb the extraordinary ray to a greater extent than

the ordinary ray. Helmholtz finds that the effect only appears with

blue light. The brushes soon disappear unless the plane of polarisa-

tion be changed at intervals.)

At any other point, such as Q, the vibration of the ray is resolved

into its two components, polarised parallel and perpendicular to the

plane through PQ. Thus the incident ray will be divided into two,

which traverse the crystal with different speeds and so give rise to

interference. The retardation of the phase of the* one component

relatively to that of the other is constant so long as the distance

PQ is constant, and becomes greater and greater as PQ increases

in length. Hence the field exhibits a series of alternately light and

dark circles surrounding the point P.

The circles are brilliantly coloured if white light be used ; and the

FIG. 151.

colours seen when the principal section of the second crystal occu-

pies any definite position are exactly complementary to those which
are seen when this plane is rotated through a right angle.

19
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These effects are produced in comparatively thick crystals, since

the difference between the speeds of the two rays, in directions not

greatly different from the optic axis, is comparatively small.

The squares of the radii of successive circles are nearly propor-
tional to the natural numbers. For it has been proved that the

difference of the squares of the speeds of propagation of the two

waves is proportional to the square of the sine of the angle which
the ray within the crystal makes with the optic axis, and also that

it is proportional to the thickness of the plate, and to the interval of

retardation conjointly. Hence the retardation varies as the square
of the sine of- the angle between the ray and the axis. But this

angle is very nearly equal to the angle QOP (Fig. 149), or to the

distance QP.
Consider now a parallel plate cut from a biaxal crystal in a direc-

FIG. 152.

tion perpendicular to the line bisecting the optic axes. The interva

of retardation is, in this case, proportional to the product of the

sines of the angles which the wave normal makes with the axes.

And these sines are approximately proportional to the distances of

the point of emergence of the ray from the points in which lines

drawn parallel to the axes, from the point of incidence on the first

face of the crystal, meet the second face. Hence the locus of P is

an oval of Cassini.
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250. Artificial Production of the Doubly Refracting Structure.

Fresnel showed that glass and other singly refracting substances

become doubly refracting when subjected to stress ;
and Brewster

showed that unequal heating of the substance is sufficient to pro-

duce the requisite strain. Compression gives rise to a structure

which resembles that of Iceland spar in producing an extraordinary

ray the refractive index of which is less than that of the ordinary

ray. Expansion produces an opposite effect.

The optic axis, in these cases, is fixed in position as well as in

direction, unless the strain be homogeneous.
If an elliptic cylinder of glass be suddenly heated uniformly over

its surface, a biaxal refracting structure is developed. This structure

is also usually seen in unannealed glass.

Analogous changes may be produced in substances which naturally
exhibit double refraction.

Clerk-Maxwell showed that a viscous liquid becomes doubly
refractive while subjected to shearing stress.

251. Eotatory Polarisation. Quartz is a doubly refracting sub-

stance in which the refractive index of the extraordinary ray is

greater than that of the ordinary ray. The wave-surface consists of

a sphere and a spheroid, but the spheroid lies entirely within the

sphere. It follows from this that the speeds of propagation of the

two rays along the optic axis are not the same. But, further, the

vibrations in the two rays are not rectilinear. They are elliptical

in general, and the ellipses are described in opposite directions in

the two rays. When the rays are propagated along the axis, the

vibrations become circular.

Now the resultant of two uniform motions, of equal period, in

opposite directions in the same circle, is rectilinear motion. For, if

A, A' (Fig. 153) represent simultaneous positions of the oppositely

moving points, the resolved parts of their motion perpendicular to

the line PQ, which is drawn from the centre of the circle through
the middle point of the arc joining A, A', destroy each other.

Hence the resultant is simple harmonic motion in the line PQ.
But if A' be retarded relatively to A, the line PQ will take a

new position, bisecting the arc between A and the new position
of A'. And, if A' is continuously retarded, PQ will revolve con-

tinuously round in the direction AA'. On the other hand, if A
be retarded relative to A', PQ will revolve in the direction from
A' to A.

The two circularly polarised rays in quartz therefore produce

plane polarised light on emergence ; but, because of the retardation

of one ray relatively to the other, the plane of polarisation has been

192



292 A MANUAL OF PHYSICS.

rotated through an amount which is proportional to the thickness of

the quartz.

The rotation is right-handed in some specimens of quartz ; left-

handed in others. Amethyst consists of alternate layers of right-

handed and left-handed quartz.

The amount of rotation is dependent upon the wave-length.

Biot, and subsequently Broch, proved that it is approximately

inversely proportional to the square of the wave-length. The first

three terms of the formula

furnish a much better approximation, p being the rotation, and a, 6,

c being constants.

The spectrum produced by plane polarised sunlight which has

passed through a plate of quartz is indistinguishable from that which

is produced by ordinary sunlight. But a profound modification

takes place if, previous to its passage through the refracting prism,

the light be passed through an apparatus arranged to polarise light

in a plane at right angles to the original plane of polarisation.

Were the quartz plate taken away, no light could pass under these

circumstances. The effect of the quartz is to restore the light, with

the exception of such rays as have had their plane of polarisation

rotated through a multiple of two right angles. Consequently, the

spectrum is crossed by dark bands. By rotating the second

polarising apparatus any one of the dark bands may be caused to

occupy any desired position in the spectrum, and so the total rota-

tion for any particular kind of light (and, consequently, the wave-

length of that light) may be measured with extreme accuracy.
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The dark bands are not sharply marked, for rays near those which

are totally extinguished are necessarily partially extinguished.

And, since portions of the light are cut out, the finally emergent

light is coloured. The coloration disappears when the length of

the quartz is so great that the portions which are cut out are dis-

tributed with practical uniformity throughout the spectrum.

Many liquids, solutions, and even vapours, possess this rotatory

power the rotation being in some cases left-handed, in others right-

handed. As a rule, the rotation produced by a given thickness of

a liquid is much smaller than that produced by the same thickness

of quartz.

Neither dilution by an inactive substance nor vaporisation alters

the rotatory power of -a liquid, except in degree ; on the other hand,
Herschel showed that quartz is inactive when in solution ; and
Brewster showed that it is inactive when fused. Hence it is inferred

that, while the rotation in quartz depends upon the crystalline

structure, the rotation in liquids and vapours is a molecular

phenomenon.
All rotatory polariscopes, or saccharimeters, depend essentially

upon the above principles. In some of them, equal intensity of two
beams of light is used as a test ; in others, the test is furnished by
the equality of tint of two beams. A spectroscopic test, such as that

which has been described above, is by far the most delicate.

If the light which has passed through quartz be reflected back, so

as to retraverse it in the opposite direction, the rotation will be un-

done. Kotation of the plane of polarisation may be produced in a

magnetic field
; but, in this case, reversal of the path of the light

will not (Chap. XXXII.) be accompanied by an undoing of the rotation.

252. Polarising Prisms. Many methods are used for the pro-
duction of polarised light.

Plane polarisation by reflection has been already described.

Any doubly refracting crystal, of course, furnishes us with the

means of producing plane polarised light, provided that we can

separate the two beams.

Some substances, such as tourmaline, strongly absorb one of the

two rays into which the incident beam is divided, and so furnish,
when of sufficient thickness, a ready means of obtaining plane
polarised light.

A block of Iceland spar separates the rays in proportion to its

length, but it is extremely difficult to obtain large blocks which are

fr/e from internal flaws. In Nicol's prism, therefore, one of the

two rays is got rid of by total reflection. A long block of the spar
is divided into two parts by a plane which is perpendicular to its
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principal section. The two portions are then cemented together, in

their original position, by means of Canada balsam, the refractive

index of which is intermediate in magnitude between the indices of

the spar for the extraordinary and the ordinary rays. Consequently,
when the inclination of the dividing plane to the path of the ray is

sufficiently great, the ordinary ray suffers total reflection at the sur-

face of the film of balsam, and the extraordinary ray alone is

transmitted.

FoucaulVs prism is essentially similar, but the film of balsam is

replaced by a film of air. A shorter block of the spar suffices in

this method, but considerable loss of light takes place by reflection

at the surface of the film.

Considerable separation of the rays may be obtained by -the use of

a prism of Iceland spar, or of quartz, which is achromatised by
means of a prism of glass. In EocJion's prism the edge, and one

of the faces, of the prism are perpendicular to the optic axis. The

rays therefore pass through the prism without separation until they

emerge at the opposite face. The prism is achromatised by means

of a second prism, of the same substance, the refracting edge of

which is parallel to the axis. The ordinary ray proceeds through
the second prism without alteration of direction, and is therefore

uncoloured ;
but the extraordinary ray is considerably refracted, and

is coloured at its edges, since the refraction depends upon the wave-

length.

Greater angular separation of the rays may be obtained by
Wollastori

}

s prism. In this arrangement the refracting edge of the

first prism is perpendicular to the optic axis, but the face upon which

the light falls perpendicularly is parallel to the axis. In all other

respects the arrangement is the same as in Eochon's prism. Both

rays are coloured at their edges, for both are deviated from their

original direction.

Methods of producing elliptically, or circularly, polarised light

have been already indicated. They all depend upon the introduction

of a difference of phase between the two rectangularly polarised com-

ponents of a beam of light. This difference may be produced by
transmission through a doubly refracting plate. When the plate is

of such thickness as to produce a difference of phase of a quarter-

period, the light is circularly polarised provided that the two beams

are of equal intensity. Such a plate is termed a quarter-wave

plate. The difference of phase may also be produced by reflection

or refraction as in FresneVs rhomb. This consists of a parallelepiped

of St. Gobain glass the faces of which are so inclined that a ray

enters and emerges perpendicularly at opposite faces after two
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internal reflections at an angle of 54 37'. Each reflection produces
a difference of phase of 45, and therefore the light emerges circu-

larly polarised if it were originally polarised in a plane inclined at 45

to the plane of internal reflection.

Conversely, Fresnel's rhomb shows the existence of circularly

polarised light by changing it into plane polarised light. This will

also occur in the case of elliptically polarised light when either axis of

the ellipse is inclined at 45 to the plane of internal reflection. But

the two cases may be distinguished by means of a Nicol's prism ;

for rotation of the Nicol produces no alteration of intensity if the

beam which is passing through it is circularly polarised, but it does

produce variation of intensity if the beam is elliptically polarised.

Though similar variation of intensity takes place if the incident

beam is partially plane polarised, a quarter-wave plate, or a Fresnel's

rhomb, enables us clearly to distinguish between these two cases.



CHAPTEE XX.

THE NATURE OF HEAT.

253. Radiant Heat. Its Identity with Light. We are accustomed
to speak of the heat which we receive from the sun just as we speak
of the light which we receive from it. And so the term ' radiant

heat,' as applied to the heat which comes to us from distant bodies,

apparently without the intervention of ordinary matter, has come
into scientific use.

The non-intervention of ordinary matter in the process of radia-

tion by which heat, like light, passes from one body to another at a

distance from it, can readily be proved. There is no sufficient

amount of ordinary matter in interstellar or interplanetary space to

account for the transference : and a hot body cools in vacuo almost

as readily as when surrounded by air indeed, in certain cases, a hot

body wih
1

cool less rapidly when surrounded by a material medium
than it will otherwise.

Luminous bodies (those which exhibit fluorescence or phosphor-
escence being alone excepted) radiate heat as well as light, and the

hotter they are the more luminous do they appear. We might,
therefore, naturally conclude that the difference between light and
radiant heat is not a difference of kind, but only a difference of

degree. This inference is fully borne out by many facts.

One point in which they completely resemble each other is recti-

linear propagation in free space or in a homogeneous medium. The
heat-shadow which any obstacle casts is identical with the shadow
which it produces with regard to light proceeding from the same
source. And, since the path of light is rectilinear, this proves that

radiant heat also moves in straight lines.

Heat, like light, is not propagated instantaneously ; and an, even

more fundamental point of resemblance than the above appears in

the fact that their speeds in vacuo are identical. This is made
evident by the simultaneous disappearance and re-appearance of

the light and heat when a total eclipse of the sun takes place.
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The laws of reflection of the two are identical, for the focus of a

mirror for heat-rays is the same as its focus for light-rays. A
thermo-electric pile, placed at the focus of a reflecting telescope, can

make evident the heat radiated from a star.

Their laws of refraction are also the same
; although, at first

sight, a difference appears because the focus of a lens for heat is

farther off from the lens than its focus for light. But this only

strengthens the analogy, for, unless the lens be achromatised, the

focus for red rays is farther off than the focus for blue rays.

Both are governed by the same laws of interference and of

polarisation. The phenomena of interference prove the existence of

periodicity of motion, and show that the vibrations are transverse,

as in the case of light. And the usual methods based upon interfer-

ence, diffraction, and refraction, enable us to measure the wave-

length, which is found to be greater than that of luminous rays.

We therefore conclude that light and radiant heat are one and the

same thing ; that the latter differs from the former only as red light

differs from blue light ;
and that it is not evident to the sense of sight

because the eye is so constituted that it cannot respond to the slower

vibrations. We already know that some eyes can perceive rays at

the red end of the spectrum (and also at the blue end) which are

totally invisible to other eyes.

And colours the word being used by analogy appear in heat

just as they do in light. Rock-salt is very transparent to heat rays

just as glass is transparent to light ; but, on the other hand, ordinary

glass is very opaque to heat rays, i.e., it absorbs them to a great

extent. It acts to heat just as coloured glass acts to light ; and

many other substances act similarly. The law of absorption, with

varying thickness of the medium, is the same as that which holds in

the case of light ( 205).

254. Heat in Material Bodies. Hypothesis of Molecular Vor-

tices. Since hot bodies give out radiation, and since the propagation
of radiation involves motion of the particles of an inert medium, we

might infer that the particles of a hot body must be in rapid motion,
and that the communication of heat from one body to another

depends upon the intercommunication of motion.

It is scarcely a century since Rumford and Davy arrived at this

result upon experimental grounds.
Previous to their investigations heat was supposed to be a form of

matter which was occluded in the interior of substances, but which
was looked on as imponderable since it did not add to the weight of

a body. This imponderable substance was termed Caloric.

According to the caloric hypothesis, a body was hotter or colder
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in virtue of its having absorbed a greater or a smaller quantity of

caloric
;
and when, by any means, the capacity of a body for caloric

was diminished, it gave out heat (or rather caloric).

In the year 1798 Rumford was engaged in the boring of cannon,
and observed (what had often previously been noticed] that there

was a rise of temperature in the process of the reduction of the solid

metal to the state of filings. But, according to the caloric hypothesis,
the rise of temperature implies a diminution of the capacity of the

substance for caloric
; and, conversely, an increase of the capacity

of a body for caloric would be accompanied by a fall of tempera-
ture unless additional caloric were supplied. Hence, in Eumford's

experiments, the rise of temperature of the filings signifies, on this

hypothesis, a diminution of the capacity for caloric.

Bumford, therefore, sought to determine by experiment whether

or not the filings had less capacity for heat than the solid metal

had. He heated equal weights of the solid metal and of the filings

to the same high temperature, and dropped them into equal quan-
tities of water at the same low temperature. He found that the

same changes of temperature were produced in both cases, and con-

cluded that the capacity of the substance for caloric had not been

reduced when the body was broken up into smaller portions.
He was not aware that there was a distinct difference between the

physical states of the two specimens of the substance which might
have caused his experiment to indicate a wrong result. For the

filings might have been so strained as to contain a considerable

amount of latent heat which would only appear on their complete

recovery from the state of strain. His conclusion was nevertheless

correct, for it is entirely supported by experiments based upon
accurate principles; and his observations therefore prove that the

caloric hypothesis is incorrect.

But Kumford did not stop at this stage. He observed that the

quantity of heat which was developed in the process of boring was

independent of the amount of metal which was abraded that a

blunt borer and a sharp borer, though producing very different

amounts of filings, caused the same development of heat if the same

amount of work were spent in driving them. And, further, there

seemed to be practically no limit to the amount of heat which

might be produced. He therefore reasoned that heat could not be a

material substance, and stated that he could scarcely conceive of

anything but motion 'which could be excited and communicated in

the manner observed.

Almost at the same time (in 1799) Davy was experimenting in

precisely the same direction. He showed that two pieces of ice
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might be melted simply by rubbing them together. Now heat is

required to produce this change of state, and so, on the caloric hypo-
(

thesis, the capacity of water for heat must be less than the capacity

of ice f&r heat. But it is well known that the exact reverse is

true.

The necessary heat might have been furnished by surrounding

bodies, and therefore Davy enclosed the two pieces of ice by other

portions of ice and placed them in the exhausted receiver of an air-

pump. Under these conditions heat could only reach them by first

melting the surrounding ice.

Davy was entitled to conclude, from the result of his experiments,

that heat was not a form of matter, but, at the time, he merely

said, 'Friction, consequently, does not diminish the capacities of

bodies for heat.'

In 1812, when again discussing the point, he spoke of heat as ' a

peculiar motion, probably a vibration, of the corpuscles of bodies

tending to separate them,' and said that ' The immediate cause of

the phenomenon of heat, then, is motion, and the laws of its com-

munication are precisely the same as the laws of communication of

motion.'

The second statement is rigidly correct ;
the first that heat is

motion is only true if properly interpreted. Heat, since it is not

matter, must be energy ; and so the true meaning of Davy's state-

ment is that heat consists in the energy of motion of the particles of

a material body. But the word *

energy
' was not introduced into

science at that time.

Davy illustrated this heat-motion, which he termed '

repulsive

motion,' by the analogy of the orbital motion of the planets. If the

speed of motion of any planet were increased, the orbit would

become larger just as if a repulsive force had acted.

In Davy's statement we have therefore the complete foundation

of the whole kinetic theory of gases (Chap. XIII.), and, more

generally, of the modern dynamical theory of heat.

Since heat is a form of energy we might infer the possibility of its

existence in a potential form, and the use of the common term latent

heat bears out the inference.

Inworking out a dynamical theory of heat Rankine advanced a hypo-
thesis of ' molecular vortices.' He supposed that the motions which

constitute heat in bodies are vortical motions in atmospheres around

nuclei, and that radiation consists in the propagation of vibratory
motions of the nuclei under their mutual forces. The energy of the

vortices is the amount of heat which bodies possess ; and the absolute

temperature of any body is the quotient of this energy by a definite
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constant for each substance. The elastic pressure, according to

dynamical laws, must be directly proportional to the vortical energy,
and must be inversely proportional to the volume which the vortices

occupy, except in so far as the mutual nuclear forces which exist in

all non-perfect gases modify this result. Latent heat is the equiva-
lent of work done in varying the dimensions of the vortical orbits

when the volumes and shapes of the spaces which they occupy are

altered. Specific heat is the equivalent of work spent in varying the

vortical energy.



CHAPTEK XXI.

RADIATION AND ABSORPTION OF HEAT.

255. Prevost's Theory of Exchanges. The fact that the laws of

communication of heat are precisely those of the communication of

motion leads to the conclusion that motion of the particles of a hot

body is not confined to the surface alone ; and this conclusion is

confirmed by the greater radiation which takes place from a thick

plate, than from a thin plate, of a transparent substance, when both

plates are at the same temperature. It indicates also that the

radiation from a hot body is dependent upon the state of that body
alone, and is not influenced by the presence of any other body,

except in so far as it may cause an alteration in the thermal state of

the former.

This is the essence of the Theory of Exchanges which was
advanced by Prevost of Geneva, under the title of a theory of
' movable equilibrium of temperature.'

According to Prevost, two bodies, which are of different tempera-

tures, and are placed in an enclosure which is impervious to heat,

will both radiate heat. The hotter body will radiate at a greater
rate than the other, until, by absorption, the temperatures of

the two are equalised. After this, each will still radiate, but at

precisely the same rate ;
so that the heat which one loses by

radiation is balanced by that which it gains by absorption. This is

the condition which Prevost termed a condition of movable

equilibrium (or, as we would now call it, of kinetic equilibrium) of

temperature.
256. Stewart's and Kirchhoff"s Extension of Prevost's Theory.

As in Chap. XVII., we define the absorptive power of a body, undei

given conditions, for any definite radiation, as the fraction of the

whole incident radiation of that kind which it absorbs
; and we also

define the emissivity of a body, at a given temperature, for any
given radiation, as the ratio of the quantity of that radiation which
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it emits to the quantity of it which is emitted by a black body under
the same conditions.

And Stewart's proof, as given in Chap. XVII., leads to the result

that the emissivity and the absorptive power of a body, at a given

temperature, for any radiation, are equal.
It is needless to enter into any discussion of special cases further

than those which have already been given ( 203). Suffice it to say
that, whatever be the quality and the quantity of the radiation

emitted by any body under given conditions, absorption must exactly
balance emission, in respect both of quality and quantity, if the

given conditions are to be maintained. Previously to Stewart's

investigations, it was known from the experiments of Leslie, De la

Provostaye, and Desains, that the radiating and the absorbing

powers of any one body were proportional to each other ;
that is to

say, it was known that a good radiator was a good absorber, and that

a bad radiator was deficient in absorbing power.
257. Laws of Radiation of Heat at Constant Temperature.

Early in the history of the subject, it was known that the radiation

from a body at a given temperature depended upon the nature of the

surface of that body. (This furnishes an additional analogy between

light and radiant heat.)

Leslie constructed a hollow metal cube, one side of which was

polished, while another was rough. A third side was covered with

lampblack, and the fourth was coated with white enamel. Although
the surfaces of the two latter sides were so very different, Leslie

found that both radiated about equally well when the cube was
filled with hot water. The radiation from the bright metallic sur-

face was much smaller than that from any of the others, and the

radiation from the rough metallic surface was considerably less than

that from the enamelled and the blackened surfaces.

It has already been proved ( 205) that the amount of any given

radiation, which is emitted from a sufficient thickness of a substance

of given radiating power, is equal to that which is emitted from a

black body at the same temperature. It was shown that the

amount which is transmitted through a plate of the substance, n
units in thickness, is K(l p)", where E is the total incident radia-

tion and p is the absorption co-efficient. Hence the amount which
is stopped by the plate is

and therefore, by definition, the absorptive power and, conse-

quently, the emissivity is

l-(l-p)'.
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As the temperature of a body rises, radiations of shorter and

shorter wave-length are emitted, and the energy in each pre-

viously existing kind is increased.

258. Heat Spectra. If the radiation from a luminous body be

passed through a slit and a prism in the usual manner, a spectrum
is obtained which enables us at once to discover the nature of the

radiation. And we may measure the amount of energy in any

given portion of the spectrum by allowing that radiation to fall upon
a medium which entirely absorbs it, and is consequently raised in

temperature to a measurable extent. But, in any such experiment,
it is necessary first to make certain that absorption does not take

place, to any appreciable extent, in the substance of the prism.

We might also indirectly analyse the radiation emitted by a given

body by means of determinations of the absorption which the body
exercises upon radiations of different wave-lengths; but such

measurements are of little value unless the substance used is of

definite chemical composition and physical structure. Some gases

(e.g., olcfiant gas) exert powerful absorption on the heat-rays ;

others -exhibit very little. The absorption produced by water vapour
seems to be largely due to the dust nuclei ( 277).

These remarks apply to the invisible portions of the spectrum

also, whether these consist of rays of higher refrangibility, or of

rays of lower refrangibility, than those which form the visible

parts.

It is found that the invisible portions of the spectrum possess
characteristics which are precisely analogous to those which appear
in the visible parts.

We cannot, by means of the thermopile ( 328), or of the

bolometer
( 343), which are the two most suitable instruments for

the present purpose, determine the energy of the radiation of one

definite wave-length. All that can be done is to measure the

energy of the total radiation which is contained between rays of

known wave-length, for the face of the thermopile and the metal

strip of the bolometer necessarily possess considerable breadth.

In the case of a refraction spectrum, besides the difficulty regard-

ing absorption by the substance of the prism, there is the difficulty
of the crowding together of the rays towards the less refrangible
end of the spectrum according to an unknown law.

If a diffraction spectrum be used, absorption may take place in

the substance of the grating if it be made of glass ; and, if it be a
metallic grating, great uncertainty exists with regard to the nature
of its action upon the invisible rays. And, although the dispersion
be ( 233) practically proportional to the wave-length, so that equal
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breadths of the spectrum correspond to equal differences of wave-

length, we must remember that the measuring instruments ought to

determine the energy contained in portions of the spectrum which
are bounded by rays the wave-lengths of which are in a constant

ratio. Further, since we are dealing with radiations of all wave-

lengths, we see that, at any one part of a diffraction spectrum, an
infinite number of different radiations are superposed, because of

the existence of an infinite number of spectra of different orders.

The difficulties of the problem have been largely overcome by
Langley, to whom is chiefly due our recent great increase of know-

ledge regarding radiations of large wave-length. He has detected,

by means of the bolometer, traces of heat in portions of the solar

spectrum corresponding to wave-lengths about twenty-four times

greater than those of the least refrangible part of the visible

spectrum.
He has shown that the wave-length at which the maximum of

energy in the spectrum exists diminishes as the temperature is

raised. This result has been deduced from theoretical considera-

tions by Michelson
;
and the numerical deductions from the theory

accord very well with Langley's observations. The energy at a

given part of the spectrum dies away in amount very rapidly
when we pass from the maximum in the direction of decreasing

wave-length; it dies away much more slowly as we pass in the

opposite direction along the spectrum.

Cauchy's formula
( 209) connecting the refractive index of a sub-

stance for a given radiation with the wave-length of that radiation

does not agree with Langley's observations on the heat-rays. Briot's

formula agrees better, but it ultimately differs from them in the

opposite direction to that in which Cauchy's differs from them.

259. Radiation at Different Temperatures. Hitherto we have

assumed that the radiating bodies with which we have dealt have

been kept at constant temperature so that their radiating powers
remained unaltered. We must now consider the relation between

emissivity and temperature.
Let us suppose that the hot body is placed inside an enclosure

which is kept at a constant temperature t. Let t-\-Q be the

temperature of the hot body, and let no heat pass from it except by
radiation.

If f(t) represent the rate of loss of heat from the hot body at tem-

perature t, the rate of loss of heat under the assumed conditions

will be

/(* + 0)-/(0;

and, since we have no adequate knowledge of the mechanism of
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emission, the form of this expression must be determined from

experiment.

According to Newton, the rate of loss of heat is proportional to

the excess of the temperature of the hot body over that of its sur-

roundings ; or, in symbols,

But, since we must regard the rate of emission as independent of the

surrounding bodies, this is equivalent to

f(t) = at + b,

where a and & are constants, and t is any temperature.

The above law is not even roughly accurate unless the differences

of temperature are small, and it becomes less and less applicable

the greater the differences are.

Dulong and Petit made an elaborate series of experiments with

the view of discovering a more correct law. They found that, when

the temperature difference was kept constant, the rate of loss in-

creased in geometrical progression as the temperature of the sur-

roundings of the body increased in arithmetical progression ;
and

the ratio of the geometrical series is independent of the tempera-

ture excess so long, at least, as the excess is not greater than

200 C.

When the temperature excess vanishes, the loss of heat is zero.

Dulong and Petit therefore expressed the law in the form

which agrees very closely with the result of their observations when
t varies from up to 80 C., and 9 does not exceed 200 C. Since

this formula may be written in the form

/(* + e
) -/(*)

= +*-<& <
we see that the absolute rate of radiation* independently of the

surroundings, is

f(t)
= aa'+ b.

The constant a depends on the nature of the radiating surface
t

but the constant a is practically an absolute constant, and is equal
to 1-0077. The law of Dulong and Petit, therefore, asserts that,

when the temperature excess is constant, the rate of loss of heat is

proportional to (1*0077)*, where t is the absolute temperature of the

20
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bodies to which the heat is radiated. It asserts also that the rate of

loss is proportional to (1*0077) 1 when t is constant.

The equation

where r represents rate of loss, might not have been borne out by

experiment. The fact that it is so borne out furnishes, as Balfour

Stewart pointed out, an independent proof of the truth of Prevost's

Theory of Exchanges, of which it is a necessary consequence.

We may write the expression a 1 in the form (1 -{- _>)# 1,

which, by expansion, becomes

But, by Newton's law of cooling, the rate of loss should be propor-

tional to 9
; and hence, substituting the values 9 11, p = 0-0077,

we see that Newton's value is fully 4 per cent, too small when the

temperature excess is 11.

More recent experiments by De la Provostaye and Desains verified

the accuracy of the law of Dulong and Petit within the limits

already assigned.

According to Hopkins the radiation per square foot per minute,

from glass at 100 C. to an enclosure at C., is 0-176 heat units,

the unit being the amount of heat which is required to raise the tem-

perature of one pound of water from C. to 1 C. Under the same

conditions the radiation from unpolished limestone is 0'236 units
;

and that from polished limestone cut from the same block is 0'168

units.

Dulong and Petit's law seems to be applicable only to the total

radiation from a body, and not to each definite radiation of which

the whole is composed. The rate of emission of particular radia-

tions from a black body seems to increase rapidly at first, and then

more slowly, as the temperature of the black body is raised.

260. Solar Radiation. Pouillet was the first to make fairly

accurate measurements of the amount of radiation which is received

by the earth from the sun in a given time. For this purpose he

invented the Pyrliclioinctcr.

This instrument consists of a flat cylindrical metallic vessel, the

surface of which) with the exception of one end which is covered

with lamp-black, is highly polished. The bulb of a thermometer is
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inserted in the cylinder, and its stem lies along the axis. The

cylinder is filled with water or mercury, and its blackened face is

directed towards the sun. In order that this may be done with

accuracy, a metal disc, the diameter of which is exactly equal to

that of the cylinder, is fixed on the end of the axis of the instru-

ment remote from the cylinder. The shadows of the disc and the

cylinder will not coincide unless the face of the latter be accurately
turned towards the sun. The area of the blackened face, and the

amount of heat necessary to raise the temperature of the cylinder
and its contents to a given extent, are exactly determined.

If the temperature of the instrument is the same as that of the air,

and if its blackened face, carefully shaded from the sun, be turned

towards the sky, radiation will take place, and the temperature will

fall 9 (say) in t units of time.

Now let the apparatus be turned towards the sun for t units of

time
; after which let it be turned towards the sky as before, during

an equal time, and let 9
f be the fall of temperature.

It is concluded that the deficiency introduced into the total rise

of temperature which took place when the instrument was exposed
to the sun, is

for, during this exposure, the cylinder was steadily rising in tem-

perature because of the heat which it absorbed from the sun, and
was at the same time steadily falling in temperature because of its

own radiation.

Hence the full rise of temperature, had no radiation taken place
from the cylinder, would have been

-.
where 6 is the rise of temperature which was actually observed. And
so, from the known constants of the instrument, the quantity
of heat which was received, in a given time, by unit area at the

earth's surface could be calculated.

Pouillet gave the expression

for the rate of rise of temperature under the above, conditions at

different times of the day. The quantity I is the thickness of the

earth's atmosphere which was traversed by the sun's rays. The
constant 6 varies from day to day, but the constant a does not so

vary. Pouillet concluded that the expression would be applicable

202
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even if there were no atmosphere, in which case the constant a

would represent the rate of rise of temperature ;
and he calculated

that, in the event of no atmospheric absorption, the quantity of heat

falling on a square centimetre of the earth's surface, in one minute,

would raise the temperature of 1*76 grammes of water by 1 C.

From the average values of the constant e, Pouillet inferred that

about one -half of the total incident solar radiation is absorbed in the

earth's atmosphere. Sir W. Thomson concludes, from the above

data, and those independently given by Herschel, that the rate of

radiation from the sun's surface is about 7,000 horse-power per

square foot, or thirty times the amount which is radiated, per square

foot, from the furnace of a locomotive.

The Actinometer is another instrument used to determine the

magnitude of solar radiation. It consists essentially of a metal

enclosure (blackened internally and kept at constant temperature)
at the centre of which the bulb of a thermometer is placed. By
means of an opening in the enclosure, the sun's rays are allowed to

fall upon the bulb for a given time, after which the bulb radiates to

the enclosure. Various experimenters have used this apparatus in

one or other of its forms. By its means Violle has found that the

radiation from the sun, which would fall per minute on a square

centimetre of the earth's surface did no absorption occur, would

raise the temperature of 2-54 grammes of water by 1 C.

Langley's more recent measurements also indicate that Pouillet's

estimate is too low. He finds that the quantity of unabsorbed heat

falling on a square centimetre would raise the temperature of

1-81 grammes of water by 1 C. Did no absorption take pl&ce, this

would become 2'8 grammes, and the amount of heat radiated from

the sun per square foot of its surface would be fifty times greater

than that radiated from a square foot of the surface of a loco-

motive.

From Langley's data we can calculate that the yearly radiation

from the sun to the earth would, if spread uniformly over the surface,

melt a uniform crust of ice fully 150 feet in thickness.

261. Radiation from Moving Bodies. The following considera-

tions regarding the motion of radiating bodies, first advanced by
Balfour Stewart, are specially worthy of notice apart from their

intrinsic value as an example of the useful employment of the

principle of Conservation of Energy.
Let us suppose that ultimate equality of temperature has been

arrived at inside the enclosure, impervious to heat, which was pos-

tulated in 203 ;
and let us further assume that one of the bodies in

that enclosure suddenly commences to move about with a speed
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which is comparable with that of light. A direct application of

Doppler's principle shows us that any other body in the enclosure,

towards which the motion may be directed, will receive energy from

the moving body at a greater rate than will one which is so situated

that the motion is directed from it.

It follows that relative motion of radiating bodies is inconsistent

with ultimate equality of temperature. But persistent inequality of

temperature would imply a perpetual source of energy; and we
therefore conclude that the relative motion of radiating bodies must

gradually cease.



CHAPTEK XXII.

EFFECTS OF THE ABSORPTION OF HEAT: DILATATION AND ITS

PRACTICAL APPLICATIONS.

262. Temperature. Increase of temperature usually accompanies
the application of heat to any substance. The fundamental distinc-

tion between heat and temperature is very clearly brought out by a

consideration of the meaning of the words hot and cold as applied

to different material substances. The bodies which are said to be

hot or cold may really be at the same temperature. Thus a mass of

iron and a mass of wood, though their temperatures be equal, feel

very differently to the touch. If the temperature of the hand be

higher than that of the two masses, the former feels cold, and the

latter feels warm ; while, if the temperature of the hand be lower

than that of the bodies, these conditions are reversed. The reason

s that the physical properties of the substances are such that, of the

two, iron is the one which most rapidly abstracts heat from, or

supplies heat to, the hand.

It is sufficient for our present purpose that we regard temperature
as that condition which determines the flow of heat from one body
to another. (See 254, 150.)

If two bodies, which differ in temperature, be placed in contact

with each other (or in thermal communication of any sort), heat

passes from the body which is at the higher temperature to the body
at the lower temperature. And two bodies, between which, on the

whole, there is no transference of heat when thermal communica-

tion is established, are said to have equal temperatures.

It is an experimental fact that any two bodies, which have each

the same temperature as a third body, are themselves at equal

temperatures.
Various methods, which will be described later, are used for the

determination of the difference of temperature which subsists

between two bodies, or between a body in one given physical state

and the same body when in another state.
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We may premise, for present purposes, that the temperatures of

ice-cold water, and of boiling water, respectively, are called degrees

and 100 degrees ; that a given number of degrees, at any part of our

scale, corresponds to a constant interval of temperature ;
and that

we call the degrees Centigrade degrees the letter C being used to

discriminate them from the degrees of other scales.

263. Dilatation of Solids. One of the most obvious effects of the

application of heat to a substance is expansion. In a homogeneous

isotropic solid, the expansion is equal in all directions. On the

other hand, in a non-isotropic solid, the expansion is different in

different directions ; but, in this case, three rectangular directions

(called the principal axes, cf. 245), can always be found such that

in one the expansion is a maximum ;
in another, it is a minimum ;

and, in the third, its value is intermediate between those along the

other two being, in fact, a maximum-minimum. When the

expansions, along these directions, which accompany a given rise of

temperature, are known, the expansion in any other direction can

be found.

We have, first of all then, to consider the laws of linear dilatation

of a solid. [The requisite measurements are readily made by direct

micrometric methods, which give accurate determinations of the

lengths of a bar at different known temperatures.]
1. It is found that the increase of length of a given bar is pro-

portional to the length of the lor at the initial temperature.
2. The alteration of length is proportional to the increase of

temperature.
These laws are symbolically represented by the equation

where l
t
and lu are respectively the lengths of the bar at the higher

and lower of the two temperatures of which t is the difference, and

k is a constant called the co-efficient of linear dilatation. This

constant is obviously the increase of length, per unit rise of tempera-

ture, of a bar the original length of which is unity.

From the three equations

where the letters Z, 6, and d denote the length, breadth, and thick-

ness of a rectangular parallelepiped of the substance, and & &
2 ,

Tc

are respectively the co-efficients of dilatation measured in the direc-

tion of the length, breadth, and thickness, we can obtain an expression
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for the cubical dilatation of the solid. Let us suppose that these

equations refer to the principal axes
; then

or

where the Vs represent volumes.

In all cases in nature, the quantities lsv &2 ,
&3 are so small that

their squares and products may be neglected ; hence, to a sufficient

degree of approximation,

if K represents the co-efficient of cubical dilatation. This gives

K= M-*a+fcs;

and so the co-efficient of cubical dilatation (which is the fractional

increase in bulk of unit volume per unit rise of temperature) is

equal to the sum of the three principal co-efficients of dilatation,

When the substance is isotropic, this latter equation becomes

K= 3&;

which asserts that the co-efficient of cubical dilatation of a homo-

geneous isotropic solid is three times the co-efficient of linear dilata-

tion.

If the edges of the rectangular parallelepiped be not in the direc-

tions of the three principal axes, the effect of the application of

heat will be to change the inclination of the faces, so that the

parallelepiped will cease to be rectangular. When the three edges
are all originally equal, and the diagonals of one of the square
faces of the cube are parallel to two of the principal axes, the

application of heat changes the square face into a rhombus such

that the tangent of half its obtuse angle is equal to 1+ (7ci Jc2)t,

where t is the increase of temperature and the original length of the

diagonals is assumed to be unity. This affords a ready means of

determining the co-efficient of expansion along one of the two

principal axes, provided that we know its value along the other ; for

the change of angle can be measured with extreme accuracy by
optical methods.

Fizeau introduced a specially delicate method of measuring the

change of length of a rod. Newton's rings ( 221) are produced by
the interference of light reflected at the surface of a film of air

contained between two plates of glass, of which one at least is

slightly curved ; and the colour of any particular ring depends on

the thickness of the film, which can be calculated when the radius
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of the ring is known. If one of the two plates be fixed, while the

other is attached to the expanding rod, the slightest change of

length of the rod causes a diminution of the thickness of the film

of air which can be easily calculated by means of the optical

changes which are simultaneously produced.
He gives the following empirical formula connecting the co-

efficient k with the temperature t expressed in Centigrade degrees :

fc= a+a'(t- 40).

The constants were determined by observations at three tempera-

tures, viz., 10, 45, and 70.
The cubical dilatation of a solid is usually determined directly by

heating it in a liquid, of known expansibility, which is contained in

a vessel made of a substance whose co-efficient of linear (and, there-

fore, also of cubical) dilatation has been found. Let V be the

volume of the vessel at C., and let KX be its co-efficient of dilata-

tion. The volume at t C. is

Similarly, the volume at t C. of the liquid which filled the vessel at

C. is

If we now place a solid, the volume of which at C. is voj and at

t C. is

the volume of liquid which overflows from the vessel at tempera-
ture t is

V,(1+IM) -

or VXKj

from which expression the value of K3 may be found.

It is needless to enumerate the various practical applications of

the dilatation of solid bodies when their temperature is raised, or of

their contraction as the temperature falls. The well-known

processes of shrinking the tires on wheels, and of drawing together
the walls of a building when these have bulged outwards, will

sufficiently serve as an indication of their nature.

One particular application to the construction of a compensation-

pendulum or balance-wheel of a watch merits special notice.

The ordinary compensation-pendulum is constructed upon the

principle that the difference between the lengths of two rods, of

different expansibilities, will remain constant, however the tempera-
ture may be altered within allowable limits, provided that the lengths



314 A MANUAL OF PHYSICS.

of the rods be made in inverse proportion to the co-efficients of

dilatation of the substances of which they are composed. This

obviously affords a means of keeping constant the distance between
the bob of a pendulum and its point of support.

If two equal bars, of different expansibilities, be soldered together

throughout their length, a rise of temperature will cause the com-

pound bar to bend in such a way that the less expansible bar is on

the concave side
;
for this is the only way in which the tendency to-

wards unequal expansions can be satisfied. This fact is made use

of in the construction of compensated balance wheels. When the

temperature of an uncompensated wheel increases, the expansion of

spokes carries the rim of the wheel further out from the centre, and
the consequent increase of moment of inertia produces an increase

in the period of oscillation. Hence a watch, or chronometer, fitted

with such a wheel will go too slow in warm weather and too fast in

cold weather. But if the rim of the wheel be divided into a number
of independent parts, each part being carried by a separate spoke,
and if the rim be compound as above described, matters may be so

arranged that the throwing-out of the weight from the centre because

of the expansion of the spokes is counterbalanced by means of the

inward bending of the segments of the rim.

It is worthy of note that one or two of the principal expansibilities

of a solid may be negative, i.e., the substance may contract in at

least one direction when its temperature is raised. In such a case

a series of directions may be found in the substance such that a

change of temperature does not give rise to any alteration of length
of the substance in any of these directions. [These directions may
be found by imagining a sphere to be drawn in the unheated body
and finding its intersection with the ellipsoidal surface into which it

becomes distorted by the application of heat. All lines drawn in the

body parallel to the lines joining the points of the curves of inter-

section to the centre of the sphere are unchanged in length.]

Hence a rod cut from the substance in any such direction may be

used as the rod of a compensated pendulum. Brewster pointed out

that a rod of marble might be so used.

An interesting example of contraction of a solid when its tempera-
ture is raised is seen in the case of india-rubber under tension. The

experiment may readily be performed by blowing steam through a

hollow tube of the substance, which is fixed at its upper end, and is

extended by means of a weight attached to the lower end.

The subjoined table contains Fizeau's determinations (see above)

of the values of the constants in his formula for the co-efficients of

linear dilatation of a few well-known substances. The constant a is,
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of course, the value of the co-efficient at 40. When more than one

value is given these refer to the various principal dilatations.

a. a'.

Carbon (retort) ... 0-00000540 ... 0*0000000144

Platinum ...... 0*00000905 ... 0*0000000106

Steel ...... 0-00001095 ... 0-0000000124

Iron (compressed) ... 0-00001188 ... 0'0000000205

Copper (native) ... 0-00001678 ... 0-0000000205

Silver ...... 0*00001921 ... 0-0000000147

Lead ...... 0-00002924 ... 0'0000000239

Ouartz f
0-00000781 ... 0-0000000205

10-00001419 ... 0-0000000348

T i
-,

(0-00002621 ... 0-0000000160

(0-00000540 ... 0-0000000087

(0*00003460
... 0-0000000337

Arragonite ......
j
0*00001719 ... 0-0000000368

1 0-00001016 ... 0-0000000064

An average value of the co-efficient of expansion of glass is

0-0000085,

264. Dilatation of Liquids. In liquids it is merely the cubical

dilatation with which we have to deal. This may readily be deter-

mined if we know the cubical dilatation, K', of the substance of

which the containing vessel is composed. Let K be the unknown

co-efficient, and let an amount of the liquid, of weight W, fill the

vessel (which must have a narrow neck) at a temperature, ,
while

the weight of the quantity which fills the vessel at is W . Now
the weight of the quantity which would have filled it, had the liquid

been inexpansible, is W (1 + K') ; but, since the liquid is ex-

pansible, this amount is diminished in the ratio of unity to

Hence we get

which determines K.

A very simple method, by means of which the co-efficient of dilata-

tion of a liquid may be found without any knowledge of that of the

substance of which the containing vessel is composed, was devised

by Dulong and Petit. In all essential particulars the apparatus con-

sists of a double U-tube, abed (Fig. 154). The portion be is occupied

by air, which separates the portions of the liquid contained in ab

and cd while preserving continuity of pressure between them.

Equal atmospheric pressure acts at the points a and d, and the air

in be is necessarily at uniform pressure throughout. Hence, when
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equilibrium is maintained, the pressure per square inch due to the

difference of level ab must be equal to the pressure per square inch

due to the difference of level dc. Let us suppose that the limb cd

d*

FIG. 154.

is raised to temperature t, while the limb ab is kept at 0.

average expansibility throughout the range of temperature is

dc- ab

The

If dv be the increase of volume produced by a small rise of tern

perature dt, while v, is the total volume of the liquid at 0, the

quantity
dv

v dt

is usually taken as the co-efficient of dilatation at the temperature t.

The true co-efficient at temperature t is obviously given by the

ratio
dv

vdf

where v is the volume of the liquid at that temperature.
The values, given by Regnault, of the ordinary co-efficient of dila-

tation of mercury at temperatures varying from C. to 850 C. are

well represented by the formula

K- 0-0001791 +0-0000000504*.

Water presents a marked peculiarity as regards its change of

volume with rise of temperature. Between its freezing-point, 0C.,
and a temperature of almost exactly 4 C., its volume diminishes as

the temperature increases. At all higher temperatures the volume
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increases as the temperature is farther raised. Thus water is in a

condition of maximum density at a temperature of about 4 C.

The existence of the temperature of maximum density is readily

shown by means of Hope's experiment. The necessary apparatus

consists of a cylindrical glass vessel the central portion of which is

surrounded by a metal casing in which a freezing mixture may be

placed. Two thermometers are inserted horizontally through the

glass vessel, one near the top and the other near the bottom, so that

their bulbs are at the axis of the cylinder. The vessel being filled

with water, a freezing mixture is placed in the casing. Very soon

the temperature marked by the lower thermometer begins to

diminish, which shows that the cold water is of greater density

than the warm water near the top of the vessel. This goes on

until the lower thermometer registers a temperature of 4 C., at

which it remains. Soon afterwards the temperature of the water at

the top of the vessel begins to fall, which shows that the colder water

is now ascending and must therefore be expanding ;
and this process

goes on until the water at the top freezes at C.

The maximum-density point is lowered by pressure to the extent of

about 3 C. by a pressure of one ton's weight per square inch.

Kopp's determinations of the co-efficient of dilatation of water are

fairly well represented between C. and 20 C. by the formula

72,000

The more recent experiments of Pierre, Hagen, and Mathiessen

indicate that the denominator of this fraction is about 5 per cent,

teo large ;
but Eossetti's results agree better with those of Kopp.

Different experimenters have determined the co-efficients of

expansion of various liquids when under pressure sufficient to keep
the liquid in equilibrium with its vapour at temperatures above the

ordinary boiling-point. Drion gives the subjoined values of the co-

efficient of dilatation of sulphurous acid :

Temp. C. Co-efficient. Temp. C. Co-efficient.

0-00173 70 0-00318

10 0-00188 90 0-00415

30 0-00219 110 0-00592

50 0-00259 130 0-00957

From these results it appears that the co-efficient of dilatation of

this liquid, at about 120 C., is double of that of air.
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Him gives the volume of water at different temperatures as

follows :

Temp.'C. Volume. Temp. C. Volume.

4 ... 1-00000 140 ... 1-07949

100 ... 1-04315 160 ... 1-10149

120 ... 1-05992 180 ... 1-12678

Consequently, at 180 C., the expansibility of water is nearly one

half of that of air.

265. Dilatation of Gases. A gas must be kept in an enclosed

space when experiments are to be made upon it with regard to its

alterations of, volume under varying conditions of temperature.
But we know that, so long as the temperature is" maintained at a

constant value the volume and pressure of the gas are in inverse

proportion to each other. Hence we may investigate the effect of

variation of temperature in two ways : we may measure the expan-
sion under constant pressure ; or, we may measure the change of

pressure at constant volume.

By such measurements Charles (and, subsequently, Gay Lussac)
was led to the conclusion that the volume of a given quantity of

any gas, under constant pressure, increases by a constant fraction

of its amount for a given increment of temperature. This state-

ment is known as Charles' Law, and is represented symbolically

in conjunction with Boyle's Law by the equation

pv=C (l+ oO,

where c and a are constants, and the meaning of the other quanti-

ties is obvious.

The pressure being kept constant, the volume increases by the

fraction a of its amount at per unit rise of temperature ;
a is

therefore the co-efficient of dilatation under constant pressure.

Again, if the volume be kept constant, the pressure increases by the

fraction a of its amount at per unit rise of temperature. Thus

the fractional increase of volume 'under constant pressure, and the

fractional increase of pressure at constant volume, have the same

numerical value if the above equation be rigidly true.

The magnificent series of experiments carried out by Eegnault
have shown that, while the above law is very nearly true in the

cases of the most permanent gases, marked discrepancies are ex-

hibited when the more readily liquefiable gases are employed. His

experiments on the undernoted gases gave as the value of the dilata-

tion between C. and 100 C. :
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Hydrogen 0-3667 0-3661

Air 0-3665 ... ... 0'3670

Nitrogen 0'3668 0'3670

Carbonic oxide ... 0'3667 ' 0*3669

Carbonic acid 0'3688 0'3710

Cyanogen 0-3829 0-3877

Sulphurous acid ... 0'3845 0-3903

The figures in the second column represent the value of the co-

efficient as determined at constant volume; those in the third

column are the values determined under constant (atmospheric)

pressure. With a single exception (in the case of hydrogen) the

latter number exceeds the former.

When the initial pressure of gases at is increased, the dilata-

tion between and 100 increases. Some of Regnault's results for

air are :

109-72 ... 149-31 ... 0-3648

374-67 ... 510-35 ... 0-3659

760-00 ... 1038-54 ... 0'3665

1692-53 ... 2306-23 ... 0-3680

3655-66 ... 4992-09 ... 0'3709

The numbers in the first two columns represent respectively the

pressure per unit area at and at 100 expressed in terms of the

weight at of a column of mercury of unit section and one milli-

metre in height.

For carbonic acid Begnault gives the similar results :

758-5 ... 1034-5 ... 0-36856

901-1 ... 1230-4 ... 0-36943

1742-9 ... 2387-7 ... 0-37523

3589-1 ... 4759-0 ... 0-38598

The variation in the case of this gas is therefore greater than in

the case of air.

The results, for the same two gases, under constant pressure,
are :

Air 760 ... 0-36706

2525 ... 0-36944

Carbonic acid ... 760 ... 0-37099

2520 ... 0-38455

Regnault's apparatus consisted essentially of a glass bulb D
(Fig. 155), which contained the gas and communicated through
the tube E with a reservoir AB which was filled with mercury.
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A tube F, open to ths atmosphere, also communicated with the

reservoir. When the co-efficient was to be determined at constant

volume, a plug C was screwed in until the mercury stood at the

points E and F in the tubes E being a fixed point. D was, under

these conditions, surrounded successively by melting ice, and by the

steam from boiling water, and the pressure in each case was found

A B

FIG. 155.

from the difference of level of the mercury in the two tubes and

the known barometric pressure. Suitable corrections had, of course,

to be applied for the expansion of the bulb by heating or by pressure.

When the dilatation was observed under constant pressure, the

plug C was, at each temperature, screwed out until the mercury
stood at the same level in the two tubes. The pressure was then

equal to that of the atmosphere.

Other volumetric, or gravimetric, methods have been employed

by Regnault and various experimenters.

266. Absolute Zero of Temperature. We may write the equa-

tion which expresses Boyle's and Charles' Laws in the form

pv-

Now as the second term within the brackets represents temperature,

the first term must also represent a temperature, for the dimen-

sions ( 27) of all the terms of a physical equation must be iden-

tical. And the numerical value of that temperature is about 273,

since a= 0*003665. Hence we must suppose that the zero of the

Centigrade scale corresponds to a temperature of 273 degrees on this
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new scale, which we may call a scale of absolute temperature, since

its magnitude is independent of the particular gas employed.

To look at the matter from another point of view, we observe that,

as t diminishes to zero and then becomes an increasing negative

quantity, the product pv constantly diminishes, and finally becomes

zero when t = - 273. If the volume is constant, this means that

the pressure vanishes when t has this value. But the pressure of a

gas is due to the motion of its particles, and hence, when t= - 273,

the particles cease to move, and the gas is therefore totally deprived

of heat.

The above equation may therefore be written in the form

pv = IU,

where R = Ca and t represents absolute temperature.

We shall see later ( 303) that this estimate of the position of the

absolute zero on the Centigrade scale is confirmed by thermo-

dynamical considerations.

267. Measurement of Temperature. The most usual method

of measuring temperature is by means of the expansion of a liquid

or a gas. Mercury is generally used in the former case, air in the

latter.

A glass tube of narrow, and as nearly as possible uniform, bore is

first chosen. If the bore be not quite uniform, its variations are

determined by the process of calibration. This consists in running
a small quantity of mercury along the tube from one e*nd to the

other, and measuring its length at the various parts. The quotient
of the weight of the mercury by its specific gravity and th length
of the column at any part gives the mean section of that portion of

the tube. Next, a bulb is blown, on one end of the tube, of a size

which is determined by the bore of the stem, the expansibility of the

liquid to be used, and the required length of a scale division.

The bulb is now slightly heated to expel some air, and the instru-

ment is then inverted in a vessel of the liquid with which it is to be

filled. As the bulb cools, some of the liquid enters it. This liquid
is then boiled in the bulb, and its vapour expels the remaining air.

A repetition of the process of inversion of the bulb and stem in the

liquid will result in both being entirely filled. So much of the

liquid is then run out that the remainder scarcely fills the stem
when it is boiled once more. The vapour drives out the air which

entered, and the tube is then hermetically sealed.

Two fixed points must now be determined on the stem. As we
shall see afterwards

( 273, 275), this may be done by means of

melting ice, and of the steam coming from boiling water in a nearly"
closed vessel.

21
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But, before these points are determined, a considerable time

should be allowed to elapse, for the bulb will not shrink quickly to

its final volume. The process of shrinkage usually goes on for

years, though, by careful annealing, the effect may be considerably

lessened.

To determine the lower fixed point of the scale, the bulb and part

of the stem are surrounded by melting ice. The final position of

the extremity of the liquid column is marked on the stem.

The upper fixed point is determined by surrounding the bulb, and

as much of the stem as possible, by the steam which is escaping
from water boiling under a pressure of one atmosphere. The final

position of the liquid is then marked on the stem.

The distance between the two marked points is then divided into

a number of equal parts.

On the Centigrade seals, the lower fixed point is marked 0, and

the higher is marked 100 ; on the Fahrenheit scale the lower is

marked 32, and the higher 212. Thus, on the Centigrade scale,

there are'100 divisions between the boiling-point and the freezing-

point of water hence its name ; on the Fahrenheit scale there are

180 divisions between these points. The Fahrenheit zero was

determined by a freezing-mixture of snow and salt, which gave the

lowest temperature known at the time when Fahrenheit first con-

structed his thermometers. The relation between the two scales is

obviously given by the equation

F-32^ C
180 "100*

where F and C respectively represent the Fahrenheit and Centigrade

scale readings.

The same interval on Reaumur's scale is divided into 80 equal

parts, the zero being the same as that of the Centigrade scale.

As already remarked, the liquid generally used is mercury. For

the measurement of temperatures below the freezing
- point of

mercury, alcohol is employed.
The air thermometer is of great use in the determination of

temperatures above those at which mercury can be employed ;
and

its readings agree pretty closely with those of the true absolute

scale of temperature as determined by thermodynamical considera-

tions. The following numbers, taken from -Regnault's results, show

the difference between the Centigrade scale of the air thermometer

and that of the mercury thermometer :

Air ... ... 20 406 60 80 100 200 300

Mercury ... 19o;98 396<67 59-62 79'7S 100 202-78 308'34.
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Self-registering thermometers are frequently employed for the

purpose of indicating the maximum, or the minimum, temperature
attained between two given periods. In the usual form of the

maximum thermometer, the expanding column of mercury pushes
an iron index along the tube. This index is left behind when the

column contracts, for mercury does not wet iron. In the usual

minimum thermometer, alcohol is used along with a glass index.

The liquid, when expanding, flows past the index ; when it contracts,

it pulls the index with it, for its surface tends to take the smallest

possible area ( 120), and this is attained when it occupies the space
between the index and the walls of the tube.

Continuously -
registering thermometers are also used. The

principle of one of the best forms of these instruments is identical

with that of the Bourdon gauge. Let abed (Fig. 156) be a longitudinal
section of a hollow metal receiver in its unstrained state, and let us

suppose that the receiver is filled with a liquid. As the temperature

FIG. 156.

rises, the pressure increases
; and, since cd is greater than ab, the

sum of the moments of the forces tending to straighten the receiver

exceeds the sum of those which act contrariwise. A system of

levers attached to such a receiver (fixed at one end) traces a con-

tinuous record on a properly-graduated paper placed on a drum
which revolves slowly at a uniform rate.

Pyrometers are used for the rough determination of very high

temperatures. In Daniell's pyrometer, a bar of platinum is slipped

into a hole bored in a rod of graphite. A plug of graphite, or

baked clay, rests on the top of the bar and fits tightly into the hole,

or is otherwise kept tightly in position. When the platinum (which
rests on the bottom of the hole) expands, the plug is pushed out,

and remains in its position of maximum displacement when the

temperature falls. From the increase of length of the platinum
thus registered, we can calculate the temperature of any furnace

in which it may be placed, on the assumption that the law of

dilatation, determined throughout moderate ranges of temperature,
holds up to the high temperatures of the furnace.

Other methods are also employed for the determination of high

temperatures. See 269, 343.

212



CHAPTER XXIII.

EFFECTS OF THE ABSORPTION OF HEAT : CHANGE OF TEMPERATURE
AND CHANGE OF STATE.

268. Unit of Heat. Specific Heat. Thermal Capacity. One of

the most marked effects of absorption of heat is a rise of the tem-

perature of the heated body. In some cases, no change of temperature
takes place, and the effect which appears instead is a change of the

physical state of the substance. But, before discussing these effects,

we must consider the methods of measuring the amount of heat

required to produce a given change ; and this, in turn, necessitates

the adoption of a definite unit of heat.

We may conveniently adopt as our unit the quantity of heat

which is required to raise the temperature of one pound of ice-

cold water to 1 C.

A given quantity of heat may therefore be measured by the

number of pounds of ice-cold water which it can raise in tempera-
ture to 1 C. We might measure it also by the number of pounds of

ice at C. which it is just able to melt ; for, as we shall see shortly,

the number of units of heat which are required to just melt one

pound of ice at C. is quite definite and measurable. More

generally, we might adopt as our unit the amount of heat necessary

to produce any definite physical change, and then we might deter-

mine what fraction of the unknown quantity of heat could produce
this change. The number of units in the unknown quantity would

be the reciprocal of this fraction.

We define the specific heat ;of a substance, under given condi-

tions, as the quantity of heat which is required to raise the tem-

perature of one pound of the substance by 1 C. From this

definition, and from our previous definition of the unit of heat,

it follows that we must consider the specific heat of one pound of

water 'at C. to be unity.

More strictly, we should define it as the rate at which the quantity
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of heat supplied to the substance, per pound of its mass, varies with

the temperature. But, in all actual cases, there is no practical

difference between the two definitions.

The mean, or average, specific heat of a substance, throughout a

given range of temperature, is obtained by dividing the amount
of heat which is required to raise one pound of the substance

through the given range by the difference between the two extreme

temperatures.
The Thermal Capacity of a substance is the quantity of heat

which is required to raise the temperature of unit volume of the

substance by one degree. It is therefore equal to the product of

the specific heat and the density of the substance.

269. Specific Heat of Solids and Liquids. Various methods

are used for the determination of specific heat.

In one method, use is made of the fact that the rate of emission

of heat from a body at a given temperature depends only upon the

nature of its surface. Hence, if we fill a thin metal globe successively

with two different liquids, and observe the rate of cooling of each

liquid at the same temperature, we can compare the specific heats of

the two liquids. For, if m, s, r, and m', s', r', represent respectively

the mass, the specific, and the rate of cooling of the liquids, we have

msr=m r
s'r

f
.

If one of the liquids be water, so that s = l, we get

In actual experiment, the liquids would be raised to a common

high temperature and readings of their temperatures would be

taken at equal intervals of time as they cooled. If a curve were

then drawn the ordinates of which represented temperature, while

the abscissas represented time, the rate of cooling would be given

by means of the tangent to the curve. Thus (Fig. 157), to find

the rate of cooling at a temperature 9, draw the tangent ab to

the curve at the point P, corresponding to 9, and let it intersect the

time-axis in the point a and the temperature-axis at the point b ;

the rate of cooling is ob/oa.
Another method of determining specific heat is known as the

Method of Mixture. Let m pounds of one substance at tempera-
ture t be mixed with m' pounds of another at temperature t', and
let the specific heats of the two substances be respectively s and s

r
.

If the temperature of the mixture be 9, the heat lost by the hotter

body (say that of mass m') is m's'(t'
-

9). Similarly, the heat gained
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by the colder substance is ms(9 -
t). A]so, if ^ be the mass of the

vessel which contains the substances (and we may regard the

stirring-rod used to mix the substances as forming part of it) while
<r represents its specific heat, the heat given to the vessel is ^(O -

t).

Here we assume that the colder substance was originally contained

in the vessel, the hotter substance being introduced from without.

FIG. 157.

Instead of //o- we may write w a unit multiplier being under-

stood. The meaning of this is that w=^o is the number of pounds
of water (specific heat= unity) which require the same supply of

heat to produce the rise of temperature (9
-

t) as the vessel required.
The quantity \ia is therefore called the water-equivalent of the vessel.

We mav therefore write

provided that the cold substance is water. If the value ofw be known,
this equation enables us to find the value of s'. If w be not known,
a second experiment in which the mass, m, of water is varied, will

lead to another similar equation by means of which w may be

eliminated or determined. Of course, the value of w may be found

by one experiment alone, in which two quantities of water, at

different temperatures, are mixed.

In an accurate experiment of this kind, precautions are taken

that there shall be as little loss of heat by radiation as possible.

This may be effected by making the vessel which contains the

water (or other liquid) of a substance which is a bad radiator of

heat ; and, in addition, this vessel is placed inside a second similar

vessel, contact between the two being prevented by means of bodies

which do not readily conduct heat. If necessary, a third vessel

may be used ; and then a correction may be made for the slight

amount of heat which is still lost by radiation.
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A third method of determining specific heat is by the Fusion of
Ice. As we shall see subsequently ( 274), a definite amount of

heat is required to just melt one pound of ice. Let H be this

quantity. If M pounds of a substance melt m pounds of ice in the

process of cooling from T C. to C., the average specific heat, S,

throughout that range of temperature is given by the equation

wH= MST.
Bunsen and others have used forms of apparatus in which the

quantity m is found by means of the decrease of volume of a mixture

of ice and water when the heat which is given out by the cooling

body melts some of the ice.

In general the specific heat of a substance increases with rise of

temperature. But the specific heat of platinum varies very slightly

with temperature, so that the range of temperature through which

a mass of that metal cools is closely proportional to the quantity of

heat which it emits. This fact is utilised in the measurement of

high temperatures.

Regnault found that the quantity of heat required to raise the

temperature of a pound of water from C. to t C. is represented by
the equation

H= t + 0-00002** + 0-0000003*8 ,

and that therefore the true specific heat, at any temperature, is

given by

^r
= l + 0-00004* + 0-0000009*2

.

His experiments were carried out at various temperatures between

C. and 230 C.

The specific heat of ice is almost exactly equal to 0'5, and

Regnault found that it is diminished by decrease of temperature.
This table gives the specific heat of various elementary substances

at ordinary temperatures :

Solid. Liquid.

Water 0-500 (at C.) ...1-000

Glass 0-180

Iron 0-114

Copper 0-096

Zinc 0-094

Silver 0'057

Tin 0-056 0'064

Mercury 0-031 0'033

Lead 0-031 .. 0'040
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It is worthy of notice that the specific heat of water is consider-

ably in excess of that of any of the other substances ; and that, in

general, the specific heat of any substance in the liquid state exceeds

that of the same substance in the solid state.

270. Law of Dulong and Petit. Dulong and Petit found that

the product of the specific heat of any elementary solid into its

atomic weight is practically constant. An alternative statement is

that the water-equivalent of an atom of each elementary solid is

practically constant. The numbers in the first column below repre-
sent specific heat ; those in the second column represent atomic

weight ;
and those in the third give the product of these two quantities.

Iron 0-114 54-5 6-2

Copper ... 0-096 63'5 6-1

Zinc ... ... 0-094 ... ... 64'5 6-1

Silver 0'057 108-0 6-2

Tin 0-056 118-0 6-6

Mercury (liquid) 0'033 202-0 6-6

Lead 0'031 207*0 6-4

Similar results have been established for various series of

chemical compounds. The value of the constant varies from one
such series to another.

271. Specific Heat of Gases and Vapours. The specific heat of a

gas, at any given temperature, may be measured in two different

ways. We may keep the pressure constant, or we may keep the

volume constant. The numerical values of the specific heat, as

obtained by the two methods, are different ; and so we speak of the

Specific Heat at Constant Pressure and the Specific Heat at Con-
stant Volume.

The experimental difficulties which are encountered in the deter-

mination of the specific heat at constant volume are almost insur-

mountable
; but, in the case of approximately perfect gases [which

closely obey the law pv= ~Rt
( 266)] ,

the principles of thermodyna-
mics show

( 301) that the difference of the two specific heats is

equal to the quantity E. Hence it is only necessary to measure the

specific heat of such substances at constant pressure. The method
which is adopted consists in passing a slow stream of the gas, under
constant pressure, through two spiral tubes, in the first of which its

temperature is raised to a known amount, while in the second it is

lowered to a known amount. The amount of heat which is given
out in the process of cooling is measured by the rise of temperature
of a known mass of water, and the mass of the gas which gives out
the heat is determined from a measurement of its volume.
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Delaroche and Berard, who first used the above method, were led

to believe that the specific heat of a gas varies with its pressure.

Regnault, who worked with improved apparatus, found that it is

independent of the pressure not merely in the case of a gas such as

air which sensibly obeys Boyle's law, but also in the cases of car-

bonic acid and hydrogen. He found also that while the specific

heat of carbonic acid increases markedly as the temperature rises,

the specific heat of air is independent of the temperature. It is,

therefore, by Boyle's and Charles' laws, independent of the volume.

And we may in all probability conclude that the specific heats of all

ga*ses which closely obey Boyle's law are absolutely constant. It

follows that the thermal capacity of such a gas is proportional to its

density. The results in the table are due to Eegnault.

Specific Heat of Simple Gases.

Hydrogen 3'4090 Oxygen 0'2175

Nitrogen 0'2438 Chlorine 0-1210

Air 0-2374 Bromine 0'0555

Specific Heat of Compound Gases.

Ammonia 0-5084 Carbonic acid ... 0-2169

Carbonic oxide ... 0-2450 Hydrochloric acid 0-1852

Sulphuretted hydrogen 0-2432 Sulphurous acid ... 0-1544

The ratio of the two specific heats of a gas may be found from the

speed of sound in that gas (see 158). In air and some other gases
the specific heat at constant pressure is almost exactly 1*4 times

greater than that at constant volume. Jamin and Richard have

obtained, by a direct experimental method (in which the tempera-
ture of the gas is raised by means of a known amount of heat

developed by. the passage of an electric current through a metallic

wire), results which agree well with those obtained by the acoustic

method.

The specific heat of water-vapour, under constant pressure, is

about 0-48.

The specific heat of ,some saturated vapours for example, those

of water and carbon bisulphide is negative. Such vapours, no liquid

being present, become superheated under increase of pressure unless

heat be withdrawn from them : and, under decrease of pressure, they
will condense unless heat be supplied to them. Their specific heat

diminishes in numerical magnitude as the temperature is raised.

On the other hand, the specific heat of the saturated vapour of ether

is positive, and increases with increase of temperature. In all cases
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the actual increase of specific heat is positive. In benzine this

increase results in a change of sign of the specific heat.

272. Change of Molecular State. Latent Heat. We have

already remarked that, in some cases, the application of heat to a

body does not produce a rise of temperature, and that a change of

molecular condition appears instead.

Thus the application of heat to ice below C., raises its tempera-
ture and causes it to expand. When the ice reaches the temperature
of C., melting takes place continuously as more and more heat is

applied. When the melting is complete the temperature again rises

until, under
ordinary atmospheric conditions, the water boils at

100 C. When alFlhe liquid has boiled away the temperature again
rises until the water begins to break up into its constituent

elements.

If, at any stage of the above process, the application of heat were

stopped, and heat were withdrawn instead, the various changes
would be gone through in precisely the reverse order.

The change from the solid state to the liquid state is termed the

process of melting or of fusion. The reverse process is called solidifi-

cation or regelation.

The change from the liquid condition to the state of vapour is

known as vaporisation, and the direct change from the solid state

to the state of vapour is called sublimation.

In no case probably do these changes take place suddenly.

Evaporation may go on at all temperatures; and many solids

gradually soften before they melt. It is most probable that such

softening occurs even in the case of ice and similar bodies which

appear to melt suddenly.
The heat which is applied in order to produce fusion or vaporisa-

tion, without change of temperature, was called Latent Heat because

it does not give rise to effects which can be measured by any ordinary

thermometric apparatus.

273. Fusion and Solidification. The laws which regulate the

process of fusion and which have already been alluded to in the case

of water, may be enunciated as follows :

1. So long as the pressure is maintained constant there is a

definite melting-point for every solid ;

2. If the solid and the liquid be well mixed, and heat be applied

slowly, the temperature of the mixture remains at the melting-

point until the whole of the solid has melted.

In the statement of the first law the condition of constant

pressure is imposed. Only in the case of a substance, the volumes

of equal masses of which, in the solid and liquid conditions
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respectively, were equal, however the pressure might vary, would

the restriction be unnecessary.
If a given liquid, such as water, expands in the act of solidifica-

tion, the application of pressure will tend to prevent the solidification,

because it tends to prevent expansion. Consequently, more heat

must be withdrawn from the liquid in order that the change of state

may be brought about. But this implies that the temperature is

lowered.

Similarly, the melting-point (or rather, from our present point of

view, the solidifying-point) of a substance, such as paraffin, which

contracts in the act of solidification, is raised by the application of

pressure. For the application of pressure makes the change occur

more readily ; and. consequently, less heat has to be abstracted in

order that the action may proceed. In other words, the tempera-
ture at which the change occurs is raised.

The theoretical investigation of the problem will be given later

( 300).

Professor James Thomson predicted from theory that the melting-

point of ice would be lowered by pressure to the extent of 0<0075 C.

per atmosphere of pressure. This prediction was fully verified by
Sir W. Thomson. The second column in the table below gives the

melting-points of paraffin, in Centigrade degrees, which correspond to

the pressures, in atmospheres, which are given in the first column.

These results were obtained by Bunsen. The second and third

pairs of columns give similar results, obtained by Hopkins, for

stearine and for sulphur respectively.

1 ... 46'3 ... 1 ... 72-5 ... 1 ... 107

85 ... 48-9 ... 519 ... 73'6 ... 519 ... 135

100 ... 49-9 ... 792 ... 79'2 ... 792 ... 140

The motion of glaciers is due, in large part at least, to the fact

that the melting-point of ice is lowered by pressure. When the

pressure arising from the weight of the superincumbent strata of ice

increases to sc sufficient extent at any point in the bed of the glacier,

liquefaction takes place, and the water flows round the obstacle to

the presence of which the increase of pressure was due. But, the

pressure being relieved at the given point (and, therefore, handed
on to another part of the mass) because of the contraction which
takes place in melting, the water again becomes solid : and so the

glacier, by a continuous process of melting and re-solidification,

gradually moves down the valley which it occupies.
For the same reason, snow which is not too cold may be readily

kneaded into a compact mass of ice : and a wire, which is loaded at
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its two extremities, and is hung over a bar of ice, will gradually cut

its way through the bar without actually dividing it into two parts ;

for, though the ice below the wire is melted by the pressure, the

water which is produced flows round the wire and solidifies above
it. The path of the wire through the clear ice can be readily traced

by means of the air-bubbles which the ice contains.

Sir W. Thomson has found that the earth as a whole is more
rigid than an equal globe of glass. This could be explained if the

melting-point of the average materials of the earth is raised by
pressure. It is well known that this is so in the case of ordinary
lavas.

Under special circumstances, the laws of fusion, as enunciated

above, may be violated.

Thus Fahrenheit showed that water which completely fills a

closed glass vessel may be cooled below C. before it freezes. And
Gay-Lussac showed that the temperature may be lowered to - 12 C.

in an open glass vessel if the surface of the water be protected from
the air by a layer of oil. The same phenomenon appears in the

cases of other liquids, such as melted tin, phosphorus, and sulphur.
In all such cases any vibration of the liquid must be avoided, or

solidification will take place suddenly.
The melting-points of different substances vary greatly. On the

one hand, hydrogen can only be solidified by the aid of powerful

freezing mixtures; and, on the other hand, gas-coke can only be

softened at the temperature of the electric arc.

Table of Meltingpoints.

Mercury -40 Sulphur 115

Ice Zinc ... 415

Phosphorus ... 44 Wrought iron ... 1500 (?)

The melting-point depends upon the purity of the substance.

Thus the melting-points of different alloys of the same two sub-

stances vary greatly.

274. Latent Heat of Fusion. The latent heat of fusion of any
substance may be defined as the quantity of heat which is required
to just melt one pound of that substance at its ordinary tempera-
ture offusion.

This latent heat is given out again on re-solidification. Its

amount, for each definite substance, under given conditions of

pressure, is invariable.

The methods used for the determination of latent heat are essen-

tially similar to those used for the determination of specific heat.
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De la Provostaye and Desains, and Regnault, found the latent

heat of fusion of ice to be equal to 79*25 units. Person, more re-

cently, has used a different method, ultimately with the same result.

He heated a quantity of ice, the temperature of which was originally

below C.
; and, in consequence, he had to take account of the

specific heat of ice, which, as we have seen, is about 0"5. He at

first obtained the value 80 for the amount of latent heat of fusion ;

but, subsequently, he traced the discrepancy between his result and
that of previous observers to the fact that latent heat seems to be

absorbed to a slight extent) before the temperature is reached.

This, if true, furnishes evidence of the truth of the supposition,

made in 78, that the process of liquefaction is gradual.
The following values of the latent heat of fusion of some sub-

stances are taken from Person's results :

Latent Heat of Fusion.

Ice 79-25 Tin 14-25

Phosphate of soda ... 66-80 Lead 5'37

Zinc 28-13 Mercury 2'83

275. Evaporation and Condensation. The laws of evaporation
are similar to those of fusion.

1. So long as the pressure is maintained constant, there is a

definite boiling-point for every liquid.

2. If the liquid be well stirred, the temperature of both liquid
and vapour remains at the boiling-point until all the liquid has

evaporated.
The effect of pressure is always in one direction with regard to

the boiling-point, for all substances expand when they evaporate.

The effect is therefore to raise the boiling-point, and its elevation is

much more marked than is the alteration of the melting-point of a

substance. But, before discussing this point farther, we must con-

sider more fully the process which is termed boiling.

Evaporation occurs to a greater or less extent at all temperatures,
and the rate of evaporation, ceteris paribus, increases rapidly as the

temperature rises. If the liquid be contained in a closed vessel, the

rate of evaporation gradually decreases and finally vanishes. (We
assume, of course, that the area from which evaporation takes place

remains constant. Under given conditions', the total rate of evapora-
tion is proportional to the magnitude of the area.) It is not really

true that evaporation has ceased. A state of kinetic equilibrium, in

which the rate of evaporation is equal to the rate of condensation,

has been attained. When this condition of equilibrium holds, the
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vapour is said to be saturated ; and it is found that the pressure of

the saturated vapour depends only on the temperature.
The presence of gases, such as air, has no influence upon the

final state of equilibrium : it merely increases the time necessary
for the attainment of the condition.

But the vapour may be saturated at any temperature as well as

at the usual boiling-point. And this leads to the definition of the

boiling-point as the temperature at which the pressure of the

saturated vapour is equal to that to which the free surface of the

liquid is subjected.

The following remarks should make the matter clear. Let

ABCD (Fig. 158) represent a cylinder in which a smooth, massless

(and therefore weightless) piston AD, which we also suppose to

be gas-tight, works freely. First, let there be a gas in the

closed region P and another gas in the region Q outside the

Q

FIG. 158.

piston. Evidently equilibrium is only reached when the pressure is

the same on both sides of the piston. Now suppose that P is filled

with a liquid below its boiling-point. The filling of the region P is

necessarily complete so long as vapour is not formed. And no

vapour can be formed until the pressure of that vapour is equal to

the pressure of the gas in the region Q, i.e., until its pressure is

equal to the pressure to which the free surface of the liquid is ex-

posed. But when the liquid is at the temperature at which this

occurs, vapour will be formed, and the continued application of

heat will force the piston up. If we now suddenly produce a

vacuum in the region Q, vapour will be rapidly formed in P
;
and

that vapour will proceed not merely from the surface of the liquid

but also in bubbles from its interior. This process of free evapora-
tion is called boiling or ebullition.

[The phenomena exhibited by Geysers are due to a like cause. A
sudden reduction of pressure in the interior of the column of water
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which fills the funnel causes the water at that part to change its

state explosively, and so the superincumbent water" is ejected

violently.]

The following table, given by Begnault, exhibits the relation

between the boiling-point and the pressure :

Pressure of the Saturated Vapour of Water.

Temp. C. Pressure in Temp. C. Pressure in

Atmospheres. Atmospheres.

0-006 120 1*962

10 0-012 130 2-671

20 0-023 140 3-576

30 0-042 150 4-712

40 0-072 160 6-120

50 0-121 170 7-844

60 0-196 180 ... ... 9-929

70 0-306 190 12-425

80 0-466 200 15-380

90 0-691 . 210 18-848

100 1-000 220 22-882

110 1-415 230 27-535

By sufficiently reducing the pressure, water may be made to boil

violently not merely to evaporate at its surface at temperatures
far below its ordinary boiling-point. The well-known experiment
of causing hot water to boil in a closed flask, by pouring cold

water upon the flask, is a case in point. The sudden reduction

of temperature causes partial condensation of the vapour already
formed in the flask, and so gives rise to a sudden diminution of

pressure.

When the boiling-point is known, the atmospheric pressure may
be obtained from a table such as that above. The Hypsometric
Thermometer, used for the determination of height above sea -level,

is based upon this principle. The atmospheric pressure diminishes

as the elevation above sea-level increases, and the result is that the

boiling-point is lowered by about 1 C. at an elevation of 960 feet

above sea-level.

The laws of evaporation are subject to exceptions, just as are the

laws of melting. Thus water may, by cautious heating in a smooth
clean glass vessel, be raised considerably above its ordinary boiling-

point, if it has been carefully freed from dissolved gases. A very

slight vibration may then cause it to boil explosively.
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The boiling-points of various liquids differ greatly under ordinary

atmospheric conditions, as the following table shows :

Table of Boiling-points of Liquids.

Zinc 1040 C. Bisulphide of carbon ... 48 C.

Mercury 350 Sulphurous acid -10
Water 100 Nitric oxide -87

276. Latent Heat of Vaporisation. Eegnault found for the
'

total heat of steam,' i.e., the quantity of heat which is given out

by one pound of water in condensing to water at C., the expres-

sion,

H = 606-5 -f 0-305,

where t is the temperature in Centigrade degrees. This gives for

the latent heat the expression

H-f'adt,

where a is the specific of water. The value of a is
( 269)

1+ 0'00004 + 0'0000009 2
. If we substitute this value in the integral,

we get
L = 606-5 - 0'695 - Q-00002*2 -0-0000003^.

This formula is true throughout the range of temperature from

C. to 230 C. If we could assume that it held true up to 706 C.,

it would indicate that the latent heat vanishes at that temperature

very nearly. (See 278.)

The latent heat of steam is very large in comparison with that of

most other liquids, as this table shows :

Latent Heat of Valorisation.

Water 536 Ether 90;4

Naphtha 264 Bisulphide of carbon 86*7

Alcohol 202 Bromine 45-6

We have found previously that the latent heat of liquefaction of ice

is also relatively large. These facts of the large latent heats of

liquefaction of ice and of vaporisation of water are of great im-

portance in the economy of nature. If they were not so, destruc-

tive floods might frequently occur from the rapid liquefaction of ice,

or sudden condensation of moisture, consequent on a slight variation

of temperature.
The latent heat of vaporisation is used for the production or

maintenance of low temperatures. Water may be kept cool in very
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hot weather if it is enclosed in a vessel of porous earthenware ; for

part of it percolates through the vessel and evaporates from its

outer surface, the latent heat being largely drawn from the vessel

and its liquid contents. Also solid carbonic acid is produced if a

jet of the liquid (formed under considerable pressure) is allowed

to escape from the vessel which contains it
;
for the outer parts of

the jet evaporate, and the necessary latent heat is largely taken

from the interior parts of the jet, which consequently are solidified.

Faraday froze mercury in the interior of a white-hot platinum

crucible, by placing it in a capsule which rested on a mixture of

solid carbonic acid and ether contained in the crucible. Similarly,

in very hot countries, ice may be formed at night on shallow pools

because of rapid evaporation.

277. Formation of Dew. When a superheated vapour is cooled

sufficiently, saturation takes place, and any further cooling causes

condensation. The moisture which is deposited in this way from

the atmosphere is termed dew. Any cold body lowers the tempera-
ture of the air in immediate contact with it

; and, when the tempera-
ture is sufficiently lowered, a thin film of moisture is deposited upon
the cold body. The latent heat which is given out on condensation

gradually raises the temperature of the cold body until it becomes

equal to that which corresponds to the vapour-pressure, at which

stage the action ceases. This temperature, being also that at which

the deposition of dew just commences, is called the Dew-point.

Hoar-frost is formed when the dew-point is below C.

Wells first gave the correct explanation of the formation of dew.

He showed that dew is freely deposited on nights when the sky is

clear, because on such nights the earth loses heat rapidly by radia-

tion and so cools rapidly to the dew-point ; whereas, on cloudy

nights, the clouds absorb, and radiate back to the earth, a large

part of the radiated heat, so that the ground does' not cool rapidly.

Another condition necessary to the ready formation of dew is that

the air shall be still, otherwise no portion of the air may remain in

contact with the ground for a length of time sufficient to allow of

its being cooled to the dew-point. The dew will, of course, deposit

itself most freely on those bodies which part with their heat most

rapidly and have also small specific heat.

Aitken has recently shown that the presence of particles of dust is

necessary before condensation of moisture can occur in the atmo-

sphere, and that supersaturation of a vapour can be produced by
getting rid of all dust-particles by filtration through cotton-wool.

These particles act as nuclei upon which the deposition takes place.
This phenomenon is very closely connected with the phenomenon of

22
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the dependence of the equilibrium-pressure of vapour upon the cur-

vature of the liquid film with which it is in contact ( 127).

Aitken has also utilised the fact that moisture is deposited upon
the dust-particles in the construction of an instrument which

enables us to determine the number of particles which are contained

in a given volume of any definite specimen of air. This instrument

is certain to prove of considerable meteorological importance.
Daniell's Hygrometer was constructed for the purpose of

accurately registering the dew-point. It consists of two hollow

glass bulbs connected by a glass tube. One of these bulbs is made of

black glass, and the other is made of clear glass. A small

thermometer, the stem of which projects into the tube of (clear)

glass which connects the two bulbs, is placed in the black bulb

along with a quantity of sulphuric ether. The remaining portions

of the interior of the instrument are filled only with the vapour of

ether. A piece of cambric is tied round the other bulb, and a little

ether is poured upon it. The evaporation of this ether cools the

bulb, and makes some of the vapour inside it condense. This de-

stroys the equilibrium of the liquid ether and its vapour, in the

interior of the instrument ; and some of the ether in the black bulb

evaporates, in order 'that equilibrium may be restored. The absorp-

tion of latent heat cools this bulb, and, finally, dew is deposited on

its exterior. The presence of a very slight film of dew is readily

observed on the black surface, and the temperature of the bulb is

noted ;
but the reading of the thermometer is necessarily a little too

low. The evaporation is then stopped, and the temperature at

which the dew just disappears is observed. This reading is a little

too high, and so the mean of the two results is taken.

Kegnault introduced improvements which rendered it possible to

observe the appearance and disappearance of the dew at practically

one temperature.
The dew-point is also found by means of Wet and Dry Bulb

Thermometers. The one thermometer has its bulb surrounded by

cambric, which is kept moist with water drawn up by capillary action

through some threads which dip into a vessel containing it. The
other (ordinary) thermometer registers the exact temperature of the

air. The reading of the wet-bulb thermometer is lower than that of

the dry-bulb thermometer so long as evaporation is going on
; but, if

the atmosphere is saturated with water-vapour, no evaporation takes

place, and both thermometers register the same temperature. The

formula

S b

^=^-48 '30'
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in whichp represents the pressure of water-vapour in the atmosphere,

p a represents the pressure which is given in Regnault's table as cor-

responding to the temperature of the wet-bulb,. S is the difference

between the wet-bulb and the dry-bulb readings, and b is the height

of the barometric column in inches, was found by Apjohn to accord

well' with observed results.

278. Continuity of the Liquid and Gaseous States. Critical

Temperature. Cagniard de la Tour first showed that a substance

may exist in a non-liquid state at a density very nearly equal to its

density in the liquid condition. A complete investigation of the

subject was made by Andrews, who showed that

There is a Critical Temperature for every vaporous or

gaseous substance, such that no amount of pressure can liquefy the

substance, unless its temperature be below the critical value.

The critical temperature of carbonic acid is 30*9 C. That of

water is about 412 C.

The latent heat vanishes at the critical temperature. We have

already seen that the latent heat of water should vanish at about

706 C., if Regnault's formula connecting latent heat with tempera-
ture held throughout that range. The result just given shows that

the formula deviates largely from the truth at temperatures higher
than the limit (230 C.) up to which Regnault worked.

The accompanying diagram (Fig. 159) represents the results of

Andrews' experiments on carbonic acid. Pressure is measured (in

atmospheres) along the axis of ordinates, and volume is measured

along that of abscissae. At the temperature 13'1,C., the volume of

the gas gradually diminishes, as the pressure is raised, until lique-
faction commences. After this, the volume lessens, without any
rise of pressure, until all the substance is liquefied; and then

immense pressure is required to lessen it even slightly.

Similar effects take place at the higher temperature 21'5. The
line (called an isothermal) which represents the simultaneous values

of pressure and volume at this higher temperature, lies, in the

diagram, entirely to the right hand of, and above, the isothermal of

13'l ; for, the pressure being constant, the volume increases with
the temperature, and, the volume being constant, the pressure
increases with the temperature. But, at this higher temperature,
the change of volume in passing from the gaseous to the liquid
state is smaller than that which occurs at the lower temperature \

and liquefaction commences at a smaller volume, and ends at a

larger volume, than when the temperature is less. The isothermals

cease to have a portion parallel to the axis of volume, i.e., liquefac-
tion ceases, at 30'9.

222
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The dotted curve separates the region in which the liquid and the

vapour can exist together in equilibrium from the regions in which

the substance is entirely liquid or entirely vapour. The isothermal

of .30
0>9 separates the region in which liquefaction can occur from

that in which it is impossible.

[Compare, with this diagram, Fig. 11, which is drawn, so as

approximately to suit the case of carbonic acid, from theoretical

considerations based, by Professor Tait, upon the kinetic theory of

gases.]

We may with great advantage, as Tait suggests, describe the

substance as a true gas, or a true vapour, according as the tempera-
ture is higher, or lower, than the critical temperature.
The compressibility of the substance is dv/vdp, where v is the volume

and dv, dp, represent respectively simultaneous small increments of

the volume and the pressure. Now, the diagram shows that, at the

commencement of liquefaction, the inclination of the isothermal to

the axis of volume becomes greater and greater as the temperature

rises, i.e., the ratio dv/dp decreases as the temperature rises. Hence,
since we suppose unit volume to be taken in all cases, the com-

pressibility of the vapour when it is upon the point of condensing
decreases as the critical temperature is approached. Similarly, the

value of dvjdp in the liquid state, when the substance has just been

entirely liquefied, increases as the temperature rises ; and thus we
see that the compressibility in the two states tends towards equality,

simultaneously with the volumes, as the temperature rises to its

critical value.

For a considerable distance above the critical point the isother-

mals exhibit two points of inflexion
;
but these finally cease to be

visible, and the isothermals closely resemble those of a perfect gas.

[The illustration affords a good example of the use of contours.

The isothermals may, as was stated in Chap. III., be regarded as

the projections of the plane sections of a surface which represents

the various simultaneous values of the pressure, volume, and tem-

perature of the gas.]

279. Solution. Freezing Mixtures. The process of solution is

extremely analogous to the processes of liquefaction. A gas which

is dissolved in a liquid may be regarded to a certain extent as if it

were liquefied, and latent heat is given out in the process of solution.

Similarly, when a solid is dissolved in a liquid, latent heat is required,

just as if the solid were directly liquefied ; but in some cases this

absorption of latent heat is masked by the heat which is developed

because of molecular action between the liquid and the solid.

The amount of heat which is disengaged in the solution of a gas
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is frequently very marked. This is so specially in the cases of the

more soluble gases, such as ammonia when water is the solvent.

The amount of gas, under definite pressure, which a given liquid

will dissolve, becomes less as the temperature is raised
; though, by

careful treatment, a state of supersaturation may be induced which

is analogous to the prevention of boiling at temperatures consider-

ably over the ordinary boiling-point of a liquid.

Supersaturation of a liquid solution of a solid may also take place

notably in the case of a substance, such as acetate of soda, which

dissolves in little more than its own water of crystallisation. If a

crystal of the acetate be dropped into the supersaturated solution to

act as a nucleus, crystallisation will take place rapidly with the

development of latent heat. A crystal of any other substance of

the same crystalline form will produce the same effect.

Heat is frequently developed or absorbed when two liquids are

mixed (mutually dissolved). If chemical action takes place to any
extent between the two, heat will be developed unless other causes

prevent. If the total bulk of the two liquids increases on mixture

as in the case of bisulphide of carbon and alcohol heat tends to be

absorbed
;
and again, the water-equivalent of the mixture may be

greater than the sum of the water-equivalents of its constituents

which also necessitates absorption of heat. If the opposite effects

to these take place, heat will be evolved. Energy may also be

changed into heat in the process of inter-diffusion of the liquids.

Disengagement or absorption of heat take place respectively accord-

ing as the effects of the one or the other sets of actions preponderate.

And, as the various actions depend upon the temperature, we find

that the total effect is sometimes reversed when the original tem-

perature of the two liquids is sufficiently varied.

Two solids even may dissolve in each other, so to speak, with the

absorption of latent heat. (Salt and snow furnish a well-known

example.) This can
(Jbviously only occur when the freezing-point

of the resultant liquid fe lower than the original (common) tempera-

ture of the solids. Part of the latent heat is obtained by cooling

the solids, part by cooling the liquid, and part, it may be, by cooling

surrounding bodies. If the whole be intimately mixed the action

necessarily ceases when the freezing-point of the resultant liquid is

reached. These remarks contain the explanation of the action of

solid freezing-mixtures, which has been elaborately investigated by

Professor Frederick Guthrie.

280. Dissociation and Chemical Combination. When the tem-

perature is raised sufficiently high a compound dissociates, or breaks

up, into its constituents. The change is not sudden but gradual.
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It commences at a certain lower limit of temperature, and ends

completely at a certain higher limit
;
and at all intermediate tem-

peratures a state of kinetic equilibrium is arrived at in which recom-

bination precisely balances dissociation. The magnitude of the

limits will, in general, depend upon the pressure. It is usual to

speak of the temperature at which one-half of the substance is dis-

sociated as the temperature of dissociation.

Conversely, when the two (or more) constituents are mixed, com-

bination does not occur until a certain temperature is attained ; but,

if the combination results in the development of heat, the process,

once started, will continue until the percentage of the mixture which
remains uncombined corresponds to the temperature which the

whole mass attains because of the heat which is set free. On the

other hand, if work is done during the process, or if heat is lost by
conduction or otherwise, the process will continue until combination

is complete when the temperature falls to the lower limit.

All chemical combination takes place in accordance with the two

laws of thermodynamics, and therefore further treatment of this

subject is deferred until we have considered these laws. (See

298.)

281. Many other effects of heat might be noted here, but it is

preferable to leave their discussion to those special sections in which

we have to treat of the properties which are affected by the applica-

tion of heat.



CHAPTEE XXIV.

CONDUCTION AND CONVECTION OF HEAT.

282. Conduction. We have already discussed the transference of

heat by the process of radiation, that is, the transference of heat

without the mediation of ordinary matter. In the process of radia-

tion the transferred energy may pass through a material substance

without being communicated to it
; indeed, radiation ceases in so

far as such communication is made. We must now consider its

transference when ordinary matter is the medium through which it

is transferred.

The most marked difference between the two cases lies in the rate

of propagation, which is extremely rapid when radiation occurs,

while it is extremely slow in comparison when ordinary matter is

the medium of transference.

Two methods exist according to which heat (which consists in

kinetic energy of molecular motion) may pass from one place to

another by means of matter. The energy may pass from one por-

tion of matter to another, which occupies a different position, by
actual (or virtual) impact between the molecules of the two portions ;

that is to say, it may be handed on from one portion to another : or

again, itmay pass, not from one portion of matter to another, but from

one locality to another by motion of the hot body. The former of

these processes is known as Conduction ; the latter as Convection.

Both take place in liquids and in gases ;
the former alone can take

place in solids.

283. Conductivity. Different substances, under like conditions,

conduct heat at different rates. Thus a bar of iron, one end of

which is red-hot, may be too hot to grasp at the cooler end ; while

a bar of wood, of the same length, which is burning at one end, may
be easily handled at the other. The property in virtue of which

such differences arise is termed Conductivity.
Most experiments which are intended to illustrate the differences

between the conductivities, or conducting-powers, of various sub-
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stances for heat exhibit only the differences between the rates

at which the temperatures of the substances, at a given distance

from the source of heat, attains a definite value under given
conditions. The well-known experiment of Ingenhouz is of this

description. In it, a series of similar and equal rods, of different

substances, project from the side of a metallic trough into which hot

water is suddenly poured. Each rod is coated with a thin film of

beeswax which melts at a definite temperature. The rate at which
this definite temperature travels along each rod is plainly shown by
the motion of the line of demarcation between the melted and the

unmelted portions of the wax. But obviously this rate will only
coincide with the rate at which heat is conducted along when the

thermal capacities of the various substances are practically identical,

for, other things being equal, the rate at which the temperature rises

is inversely proportional to the thermal capacity.
Fourier was the first to give an accurate definition of conductivity.

The whole subject of heat-conduction was so fully and accurately

developed by him that his work ' Theorie analytique de la Chaleur
'

published in 1822, still remains the text-book on the subject.
Let us suppose that the substance, the thermal conductivity of

which we are considering, is in the form of a uniformly thick plane
slab of practically infinite extent. Let 9 be its thickness

;
and let

one side be kept at uniform temperature t, while the other is kept
at uniform temperature t' until a steady flow of heat takes place
from side to side. The quantity of heat, h, which passes in T units

of time through an area a of the surface of the slab is found ex-

perimentally to be directly proportional to r, a, and t' t, while it is

inversely proportional to 9. Hence we may write

The quantity (' )/# is called the temperature gradient, and Jc is

the conductivity.
If the area, the temperature gradient, and the time, be all unity,

the equation becomes

&*,
and so we obtain the following definition of the conductivity :

The thermal conductivity of a substance, at any temperature, is

the number of units of heat which pass, per unit of time, through
unit of surface of an infinite slab of the substance, of unit thick-

ness, the sides of which are kept respectively at temperatures half
a degree higher, and half a degree lower, than the given tempera-
ture.
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In making this definition we assume that the unit of length is not

excessively small that it is (say) a centimetre, an inch, or a foot

and that an ordinary temperature degree say, the Centigrade is

used, so that the temperature gradient is not large. The necessity
for these restrictions is apparent, if we consider that the conductivity

may (it actually does) vary somewhat with the temperature ; for, in

consequence of such variation, the temperature gradient could not

be sensibly uniform from side to side of the slab, if the difference of

the temperatures at the two sides were large. As a special case,

let us suppose that the conductivity of a layer of the slab, of half its

total thickness, is one-half of that of the remaining portion. Since

the same flow of heat takes place through both portions, the dif-

ference of temperature between the sides of the former portion must
be double of that between the sides of the latter.

Of course, even if the conductivity varies from point to point,

whether from variation of temperature or from any other cause, the

quantity &, determined from the above formula, will always repre-

sent the average conductivity of the slab considered as a whole.

But, quite apart from the question of such variation, we cannot

assert that the quantity of heat which will pass through a slab, one

unit in thickness, under unit difference of temperature, will be pre-

cisely equal to the quantity which will pass through a slab, n times

thinner, under a difference of temperature n times less, when n is

a very large number, and all the other conditions are unaltered.

284. Measurement of Conductivity. In one form of experiment
for the absolute determination of conductivity, a steady state of

temperature is maintained throughout the substance. This method

was used by Lambert, and subsequently, under greatly improved

conditions, by Forbes.

In Forbes' method a long bar of the substance of uniform cross-

sectional area is used. One extremity of the bar is inserted in a bath

of melted lead, or solder ;
and the other extremity is exposed to the

air, or, if necessary, is cooled by a current of water. Small holes,

into which a little mercury is poured, are drilled in the bar at

regular intervals; and these holes are lined with iron (if the bar

itself be not made of iron) in order to prevent amalgamation.

Thermometers, inserted in the holes (which are found not to appre-

ciably affect the flow of heat along the bar) register the temperature
of the bar in their immediate vicinity.

If distance measured along the bar from the source of heat be laid

off along ox (Fig. 160), and if ordinates be drawn at points such as

j>, corresponding to the positions of the thermometers, and of lengths

which are proportional to the readings of the thermometers at these
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points, a curve drawn free-hand through the extremities of the

ordinates will enable us to obtain the temperature gradient at any

P
FIG. 160.

part of the bar. For the tangent of the angle of inclination of the

line which touches the curve at the extremity of any ordinate is

equal to the space rate at which the temperature varies, per unit of

length, at the corresponding section of the bar
; i.e., it is equal to

the gradient of temperature at that section. But the sectional area

of the bar is known, and hence, if we can determine the quantity of

heat which passes in a given time through the given section, we
can determine the conductivity by calculation from the equation
above.

Now the heat which passes any section is entirely lost from the

remaining portion of the bar by radiation, or otherwise ;
and any

heat which is given to the water employed in cooling the far end of

the bar, if this is required, can be readily estimated by means of the

rise in temperature of the water, while the heat which is lost by
radiation and convection is found by a special experiment.

During the above experiment, a thermometer, inserted in a hole

in a small bar which is cut originally from the long bar, indicates

.the temperature of the air in the neighbourhood of the large bar.

In the second experiment, which is made for the purpose of deter-

mining the rate of loss of heat, the small bar is heated uniformly to

a temperature higher than the highest recorded in the former one.

The bar is now allowed to cool, and the thermometer which is

inserted in it enables us to determine the rate of loss of heat per
unit of time, per unit of length of the bar ( 269). The mass of

unit length is known, the specific heat is also determined, and the

product of these quantities into the rate of fall of temperature gives

the rate of loss of heat. This being known for all the various

temperatures observed at the different parts of the bar in the first

experiment, the total rate of loss of heat from the portion of the

large bar, beyond any given section, is easily calculated. And so

the conductivity, at particular temperatures, can be found.

In the second experiment the temperature of the air is obtained
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by means of the long bar, so that the results in both cases can be

compared, as is necessary, at the same excess of/temperature over that

of. the surrounding air. But in addition to this, since the rate of

cooling depends upon temperature and pressure of the air, it is

necessary to perform both experiments under as nearly as possible
the same conditions of temperature and pressure.
The unit of heat which is employed in this method is obviously

the amount of heat which is required to raise the temperature of

unit volume of the substance by one degree, for the amount of the

heat is measured in terms of changes of temperature in the bar. Con-

sequently the quantity which is so determined is not the therma

conductivity as above denned. Maxwell calls it the Thermometric

Conductivity; Thomson calls it the Thermal Diffusivity. The
thermal conductivity of any substance is obviously the product of

the thermometric conductivity into the thermal capacity of that

substance.

Tait, who repeated and extended Forbes' experiments, gives the

following values of

Thermometric Conductivity.

Temperature C. 0. 100. 200. 300.

Iron ... 0-0149 0*0128 0*0114 0*0105

Copper, electrically good . . . 0'076 0*079 0*082 0-085

Copper, electrically bad . . . 0'054 0-057 0'060 0*063

German silver 0*0088 0-009 0*0092 0-0094

This table indicates that, with the exception of that of iron, the

thermometric conductivity of all these substances increases as the

temperature rises.

Tait also gives, for the iron and the two specimens of copper (the

units being the foot, the minute, and the degree C.), the following
values of ***

Thermal Conductivity.

Iron 0-788(1-0-00002^)

Copper, electrically good ... 4'03 (1+0'0013)

Copper, electrically bad ... 2-84 (1+0-00140

It appears, therefore, that in general the thermal conductivity

increases as the temperature rises. Also, the order of the metals

with regard to conduction of heat is the same as their order with

regard to conduction of electricity. Forbes had observed this fact,

and had expected that, as in the case of electric conduction, the

thermal conductivity would decrease as the temperature becomes

higher. This, as we see, does not, in general at least, hold true.
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Dr. A. C. Mitchell has recently, under Professor Tait's direction,

repeated these experiments with the same bars, but under improved
conditions. For one thing, all the bars were nickel-plated, so as to

avoid alterations of the surface from oxidation at high temperature.
His results are, on the whole," confirmatory of the previous results

with this chief exception, that he found the temperature co-efficient

for iron to be positive, as it is in all the other substances.

A different method was employed by Angstrom. In his method

one end of the bar is alternately heated and cooled during equal

periods of time, the temperature of the source of heat being kept

constant. The alternations of heating and cooling are. maintained

until all the thermometers indicate practically periodical changes of

temperature. Fourier's mathematical investigations show that, if

the variations of temperature do not sensibly affect the conductivity

and the specific heat, the conductivity can be calculated from the

rate at which the range of temperature diminishes per unit of length

of the bar, together with the observed speed at which the ' waves of

temperature
' run along the bar, provided that the rate of surface -

loss of heat is proportional to the excess of the temperature of the

bar over that of its surroundings.

285. Conduction through the Earth's Crust. Angstrom's
method has a direct application to the problem of the conduction of

the diurnal and annual waves of solar heat downwards through the

crust of the earth. In this investigation we may assume that the

heated surface is practically an infinite plane, and that the flow of

heat takes place in lines perpendicular to this plane.

Let ab (Fig. 161) represent the surface, and let cd, ef, represent

planes parallel to the surface, at distances x and x-\-dx, respectively,

from it. If c be the thermal capacity of the substance through which

ct

f
FIG. 161.

the flow takes place, while v is its temperature, and t represents

time, the quantity of heat which enters a portion of the substance,
of small thickness dx and area a, in a small interval of time dt is

JU.

.... (1)
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for cadx represents the quantity of heat which must be abstracted

in order to lower the temperature of the volume aSx of the substance

by one degree, and dv/dt . t is the change of temperature in the

time Si.

If Tc be the conductivity of the substance, the quantity of heat

which, in the time St, crosses in the positive direction the area a of

the side of the slab nearest the surface is

dx

Similarly, the quantity which passes downwards through the area a

of the surface which is distant from the former by the amount dx is

(since dx is small)

7 dv t
d (-. dv\

&j--Hjn&j- <

dx dx\ dx)

Consequently, the amount of heat which, on the whole, enters the

volume a&x in the time dt is

and hence we get

c~
v= (%} (3)

db dx\ dx)'
'

since each of the quantities (1) and (2) represents the same amount
of heat.

Now ( 27, 67) let us consider this equation simply as an equa-
tion of dimensions. The difference of temperature dv appears

linearly on both sides of (3), and therefore the range of temperature
does not appear in the dimensional equation. We get

C_JL
T~W ( '

where t represents time, and I represents length ;
for dx, the dimen-

sions of which are those of a length, appears twice as a factor in the

denominator on the right-hand side of (3) ; while & and dt appear
once only on the right-hand side and the left-hand side, respectively,

of that equation ; and we must remember that the sign of equality

indicates now equality of dimensions alone.

From (4) we get M= V c'
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which means that, if the times are altered in any fixed proportion

p, the lengths must be altered in proportion to the square root of p
in order that the flow of heat may take place under similar condi-

tions in the altered circumstances. In other words, the distances at

which similar effects are felt (for example, the distances below the

surface at which the periodic variations of surface-temperature
cease to be felt] are proportional to the square root of the period.

Now the period of the annual heating and cooling is 365 times as

great as the period of diurnal variations. Hence the effect of the

summer's heat is felt about nineteen times as far below the surface

as the effect of the diurnal heat is felt.

Again, r
r v ct'

Here we may suppose that I represents the length of a wave, while

t is the periodic time, so that the fraction on the right hand is pro-

portional to the rate at which the wave of heat travels downwards.

We see, therefore, that this rate is directly proportional to the square
root of the conductivity, and is inversely proportional to the square
root of the thermal capacity and the periodic time conjointly.

It follows that, when the period is constant, the date at which
the maximum temperature reaches any given depth is later than

the date at which it left the surface in direct proportion to the

depth.
The law which regulates the diminution of the range of tempera-

ture with increase of depth cannot be obtained from equation (3) in

the way in which we have obtained the two laws just enunciated ;

for the temperature does not appear in equation (4). But we may
write (3) in the form

^dvdx_ d
(->dv\

"dxdt ~dx( dx)
'

and we may suppose that dxjdt is the speed with which the heat-

wave travels downwards, in which case the equation becomes

V ck dv_ d/,dv
T

' dx-

where T is the periodic time, and dv/dx now represents the rate at

which (say) the maximum temperature changes as the wave passes
down.

This equation asserts that the rate of diminution of the rate of

change of temperature with depth is proportional to the rate of

change itself. In other words, the rate of change diminishes in
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geometrical progression as the depth increases in arithmetical pro-

gression. And its rate of diminution is */cj v/^T. But, since the

rate of diminution of the rate of alteration of the range is propor-

tional to the rate of alteration itself, it follows that the rate of altera-

tion bears the same ratio to the range. Hence the range diminishes

in geometrical progression as the depth increases in arithmetical

progression, the rate of diminution being directly as the square
root of the thermal capacity, and inversely as the square roots of the

conductivity and the periodic time conjointly.

As the result of direct observations (begun by Forbes in Edinburgh
in 1837) of the temperature at different distances below the surface

of the earth, it is found that the annual heat-wave travels inwards

at the rate of little more than sixty feet per annum, and that the

range of temperature has diminished to a very small fraction of its

original amount when half of that distance has been traversed.

The diurnal heat is therefore inappreciable at a depth of at most

about two feet. Of course, all these results depend upon the nature

of the soil.

The thermometers nearest the surface are affected by changes in

the weather, but these disturbances rapidly die out.

When a steady state of temperature is reached, dv/dt vanishes,

and (3) becomes

dfdv
'dx\ da

This gives dv
K-= = a (constant),dx

which shows that the temperature-gradient varies inversely as the

conductivity. This applies directly to the case of the earth regarded

as a cooling body, and shows us that in strata throughout which the

conductivity does not vary, the temperature increases uniformly

per unit of depth. Of course, if the earth is regarded as a cooling

body, the steady state of temperature is impossible ; but its rate of

cooling is so slow that the time-variations of temperature may
be neglected.

Fourier's equations, when applied to past time as regards the

earth or the sun, indicate a state of uniform high temperature

throughout the mass a state which could not have arisen by any

process of conduction. This suggests the production of the heat by
the gravitation of separate masses ( 93).

286. Conduction in Crystalline Bodies. Crystalline bodies

possess, in general, unequal conducting power in different directions.
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The conducting power is symmetrical with regard to three

rectangular axes called the principal axes of thermal conduc-

tivity.

If a single point-source of heat were placed in the interior

of a crystal, the loci of constant temperature would be con-

centric ellipsoids surrounding that point ;
and Stokes has shown

that the conductivities parallel to the axes of these ellipsoids ar

proportional to the squares of the axes. Sections of such an

ellipsoid can be obtained by means of thin plane plates of the crystal

cut in different directions from the substance. If a copper wire be

passed through a small hole drilled through such a plate in the

direction of the axis of the ellipsoid conjugate to the plane, and if

this wire be heated by an electric current, the heat conducted away

by the plate may be made to melt a thin coating of beeswax on the

surface of the plate. The boundary between the melted and the

unmelted wax is a section of the above ellipsoid.

287. Conduction in Liquids and Gases. The thermal conduc-

tivities of liquids (neglecting liquid metals) are small in comparison
with those of solids ; and those of gases are smaller still.

In experimental investigations on the subject, great care must be

taken to avoid convection currents (see below), which would com-

pletely invalidate the results.

In the case of gases, the conductivity can be calculated from the

kinetic theory.
288. Convection. Under gravity, all liquids and gases tend to

arrange themselves in horizontal layers the densities of which de-

crease as their distances from the earth's surface increase. This

condition may be entirely disturbed because of variations of tem-

perature ; for the consequent changes of density destroy the equili-

brium, and currents are set up in the fluid so as to restore it. These

are called '

convection-currents.'

We have already discussed a typical case in dealing with the

maximum density point of water.

Very marked examples occur on a large scale in nature. The
trade-winds are due to the ascent of hot air currents in equatorial

regions, while colder air blows in from the polar regions to take its

place. [The north-easterly or south-westerly direction of these winds
is due to the rotation of the earth.] A considerable part, at least, of

ocean circulation, is also of the nature of convection. Again, when-
ever water evaporates, heat is absorbed to be evolved wherever

condensation occurs. This is indeed one of the most fruitful sources

of violent storms ; for, if sufficient heat is developed, the consequent
increase of temperature causes a rapid up-rush of air, and so creates

23
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a partial vacuum which gives rise to a violent inflow of the sur-

rounding air. [The air which comes from the south has (in the

northern hemisphere) a greater eastward motion than that which
comes from the north, and so a counter-clockwise vortex motion is

produced. Thus the rotation of a cyclone is explained.]
Practical applications of the principles of convection are seen in

the usual methods of boiling water, of ventilation, etc.

A hot body, which is cooling in a gas or a liquid, loses heat by
convection as well as by radiation. The law of convective cooling
in a gas has been elaborately studied by Dulong and Petit. Their

results are expressed by the formula

where r is the rate of cooling, a is a constant for a given gas and a

given body, p is the pressure of the gas, 6 is a constant for any one

gas, and 9 is the excess of the temperature of the cooling body over

that of the gas. The rate is independent of the nature of the surface

of the body but varies with its form and dimensions.



CHAPTER XXV.

THERMODYNAMICS : HEAT AND WORK.

289. Mechanical Equivalent of Heat. First Law of Thermo-

dynamics. Heat, since it is & form of energy, may be transformed

into mechanical work and into all other forms of energy ; but the

former transformation is the only one with which we are at present

concerned.

Colding and Joule were the first, after Rumford, to make deter-

minations of the amount of work which can be produced from a given

amount of heat, i.e., of the mechanical (or, more properly, the dyna-

mical) equivalent of heat.

The most direct method of conducting such an investigation con-

sists in spending a known amount of work in the production of heat

by friction. This method was used by Joule, who caused a falling

weight to drive a vane rotating in the interior of a calorimeter

which contained a known amount of water. The amount of heat

developed was determined by means of the observed increase of the

temperature of the water, due precaution being taken to correct for

the loss of heat by radiation, and for the heat developed by friction

between the parts of the apparatus. Various other methods were
used by Joule, Him, Regnault, and others. For example, Joule

proved experimentally that the heat developed by the sudden com-

pression of air is practically equivalent to the work spent in com-

pression ( 294) ; and from this result, together with an accurate

determination of the specific heats of air, he obtained the value of

the mechanical equivalent. He also determined its value by means
of the heat developed in a conductor by the passage of a current of

electricity through it under given conditions
( 342). One of Hirn's

series of experiments was made upon a heat-engine hi actual use.

In another series, he experimented upon the heat developed by per-

cussion. The latter of these gave a good result ; the former did

not.

Joule finally gave the number 772 (in foot-pounds at the latitude

232
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of Manchester) as the amount of work necessary to raise the tem-

perature of one pound of water by one degree Fahrenheit. The

equivalent of the heat-unit (Centigrade) which we have hitherto

used, is therefore 1,390 foot-pounds.

These experiments prove the law of conservation of energy in so

far as heat and work are concerned. The statement of the law of

conservation for these two forms of energy goes by the name of

the FIRST LAW OF THERMODYNAMICS, which asserts that wJien

equal quantities of mechanical effect appear from purely thermal

sources, or disappear in the production of thermal effects alone,

equal quantities of heat disappear or are produced.
290. Carnot's Complete Cycle of Operations Although, as is

indicated in the previous section, we can determine, by experiment,
the direct relation between given amounts of heat and work, we
are not entitled to draw any conclusion regarding the relation

between the heat which disappears and the work which appears
in any given physical process, unless a certain condition be observed.

The necessity for this condition (which has already been referred to

in 254) was pointed out by Sadi Carnot.

The condition is that the working substance must pass through a

complete cycle of operations, i.e., a cycle at the end of which the

substance has returned to its original physical state. Heat may
have been expended in the given cycle, and work may have been

produced ; but, unless the final state is the same as the initial state,

we cannot say that the work and the heat are mutually equivalent.

For example, carbonic acid gas is heated by compression, but the heat

developed is not the equivalent of the work spent in compression,
for work is done by the molecular forces during the process.

In order to be able to reason correctly upon the connection between

heat and work, Carnot assumed the existence of a heat-engine which

can never be realised in practice. But this does not render his

results any the less valuable, for, in order that we may be able so to

modify Carnot's results that they may apply to the special case, we

only require to know in what way, and to what extent, any given

engine differs in its action from Carnot's.

He assumed that his engine was furnished with a cylinder the

sides and piston of which were absolutely impermeable to heat,

while the bottom was a perfect conductor of heat. He assumed

also the existence of two bodies, one hot and the other cold, the

temperatures of which were kept constant. The former of these

was to act as the source of heat ; the latter was to act as the con-

denser. The working substance is supposed to be placed in the

cylinder below the piston, and may be any substance whatsoever,
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with any properties whatsoever. But, for the sake of definiteness,

we may assume that it acts as the steam in an ordinary engine
would act.

Let us suppose that the cylinder, with its contents at the tem-

perature of the cold body, is placed on a non-conductor of heat.

The contents will retain their temperature (to, say) so long as the

cylinder remains on the non-conductor, for the working substance is

now surrounded on all sides by non-conductors. Let the volume

and pressure of the substance be denoted by v and p respectively.

[Eemark here that the physical condition of a known mass of the

substance is completely determinate when any two of its tempera-

ture, volume, and pressure are given.]
As the first operation of Carnot's cycle, the cylinder still re-

maining on the non-conductor, press down the piston until the

temperature of the substance rises to that of the hot body ( 1} say)

and the volume and pressure become vl and p l respectively.

As the second operation of the cycle, place the cylinder, with the

condition of its contents unaltered, on the hot body, and let the

substance slowly expand until its volume becomes (say) v
z ,
and the

pressure becomes p.2 (<PI). The expansion must occur so slowly
that heat can flow into the substance so as to constantly prevent its

temperature from being finitely different from ^.

As the third operation place the cylinder and its contents again
without variation of condition upon the non-conductor, and let

the working substance expand until its temperature falls to that of

the cold body. Let the pressure and the volume now be j 3 (<^2)

and v.A respectively.

Lastly, place the cylinder upon the cold body and slowly press
down the piston the temperature of the contents remaining at to

until the volume again becomes t?o, and the pressure, therefore, again
takes the value p .

This series of operations obviously satisfies Carnot's condition

that the final condition of the working-substance shall be identical

with its initial condition, i.e., it forms a complete cycle.

Now in the second operation heat was taken from the hot body,
and, in the fourth operation, heat was given to the cold body. Let
these quantities be 7^ and h respectively.

Also, in the first and fourth operations, work was done upon the

contents in diminishing their volume
; and, in the second and third

operations, the contents, in their expansion, did work against the

external pressure. Let these quantities be iv and WL
. respectively.

In the first and fourth operations the volume decreased from v% to

vv and the temperature was either equal to or rising from t to
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^ : in the second and third operations the volume increased from
v

l
to v$, and the temperature was either equal to ^ or falling from

fx to t . In the former pair the temperature was therefore on the

whole lower than it was in the latter pair. Consequently the

pressure was higher when work was being performed by the sub-

stance than when it was being expended upon it, and therefore

Wi WQ is positive. And, the cycle being complete, we can write

where J is the multiplier (the mechanical equivalent, sometimes called

Joule's equivalent hence the letter J) required to change the heat

units into dynamical units. This equation is the analytical expres-
sion of the First Law of Thermodynamics.

291. CarnoVs Reversible Cycle. Besides the idea of a complete

cycle of operations Carnot introduced the equally important and
fruitful idea of a Reversible Cycle. This is a cycle which can be

performed in the exact reverse order : and Carnot's cycle can be so

performed.
First. Begin with the cylinder on the non-conductor, the tempera-

ture, volume, and pressure of its contents being tlt vlt and p l

respectively. Let the substance expand until these quantities
become t

,
v

, andp .

Second. Place the cylinder on the cold body and let the expansion

proceed until the pressure and volume become ps and v3 respectively,

the temperature being still t .

Third. Place the cylinder on the non-conductor, and push down
the piston until the temperature rises to 15 the pressure and volume

becoming p2 and v.2 respectively.

Fourth. Place the cylinder on the hot body and compress the con-

tents until the initial conditions are again attained.

Now in the first and second of these reverse operations work was

done by the substance, while the temperature had either the low

value t or was falling from ^ to t : and, in the third and fourth

operations, work was done upon the substance, while the tempera-
ture remained at the high value 1} or rose from t to tlf On the

whole, therefore, the temperature and consequently the pressure

had a higher value when work was done upon the substance than

when work was performed by it. But heat was absorbed from the

cold body in the second operation, and was given to the hot body in

the fourth. In the reverse cycle, therefore, heat has been pumped
up from the condenser to the source of high-temperature heat, but
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work has been expended in the process. The complete action is

also represented by the equation of last section.

Carnot reasoned upon the supposition that heat was material and

so believed that the quantity of heat which was absorbed from

the hot body was given to the cold body in the direct process, and

that the quantity which was absorbed from the cold body was

given to the hot body in the reverse process. He supposed that the

heat did work in the direct process merely in being let down from a

source at high temperature to a sink at low temperature, just as

water does work in falling from a high to a low level.

The interpretation of his result, on the principle of conservation

of energy, is simply that the excess of the heat absorbed over that

emitted is directly transformed into its equivalent in work ;
and that,

in the reverse operation, the heat-equivalent of the work expended,

together with the heat absorbed from the cold body, is equal to

the heat given to the hot body.
292. Reversibility the Test of Perfection. Second Law of

Thermodynamics. We shall now discuss one of the many important
results which can be deduced from Carnot's principles.

Let an engine be reversible in the sense that all its physical and

mechanical actions can be performed in the exact reverse order.

Such an engine is perfect in the sense that it is as perfect as an.y

engine, working under the same conditions, can be, i.e., the revers-

ible engine, taking in a quantity 7ix of heat at temperature tlt and

working with its condenser at the temperature ,
will perform as

much work as will any other engine, working through the same

range of temperature, and also taking in the quantity of heat hi at

the temperature r
Carnot proved this statement by showing that, if it were not true,

the perpetual motion would result. Let M denote the reversible

engine, and let N denote the (supposed) more perfect engine. Make
N work directly between the temperatures tL and tQ , taking in a

quantity of heat 7^, giving out a quantity h
,
and performing an

amount of work W > w the quantity of work which the reversible

engine would produce under the same conditions. Make M work

backwards between the same sources at the same high and low tem-

peratures. A quantity of work w is all that has to be expended
in order to make it take in the amount h of heat at the tempera-
ture t andrestore the amount \ to the source at the high temperature.
Hence an excess of work W w is gained in the double process,

while, on the whole, no heat has been transferred either way. But
this means the perpetual production of work from nothing, which
is impossible. Hence the reversible engine is perfect.
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To adapt this reasoning of Carnot to the modern ideas of energy,
we have only to argue thus : Work is performed in the double

cycle, while no heat is on the whole taken from the source, therefore

N must give less heat to the cold body than M takes from it, and so

the double engine can only work by giving to the hot body heat

which it has taken from a colder body, the temperature of which it

constantly lowers ; but this is in opposition to all known facts, and
the denial of its possibility may be safely taken as axiomatic.

This adaptation is due to Sir W. Thomson, who re-introduced

Carnot's work to the scientific world when it had been long disre-

garded, and who applied his principles to the deduction of thermo-

dynamical results of the highest importance.
The statement that an engine which is reversible, in the sense

that all its physical and mechanical actions are capable of exact

reversal, converts, under given conditions, the greatest possible
fraction of the heat which is supplied to it into useful work is known
as the SECOND LAW OF THERMODYNAMICS. We shall find in 298

that its analytical expression is 2(hjt)
= o.

293. Absolute Temperature. The efficiency of a heat-engine is

the ratio of the quantity of heat which it utilises in the form of

mechanical work to the total quantity of heat which is supplied to

it. In the notation used above it is

The value of this fraction is a maximum, under any given con-

ditions, when a reversible engine is used. And all reversible

engines, whatever may be the nature and properties of the working-

substance, are equally perfect (i.e., they possess the same efficiency)

when they work through the same range of temperature. This

enables us, as Thomson pointed out, to obtain an absolute measure

of temperature absolute in the sense that it does not depend upon
the properties of any particular substance.

The definition which Thomson finally adopted was framed so as

to make the absolute scale coincide as nearly as possible with the

scale of the air-thermometer. It is this :

' The temperatures of two bodies are proportional to the quan-
tities of heat respectively taken in and given out in localities at

one temperature and at the other, respectively, by a material

system subjected to a complete cycle ofperfectly reversible thermo-

dynamic operations, and not allowed to part with or take in Jieat

at any other temperature; or, the absolute values of two tempera-
tures are to one another in the proportion of the heat taken in to
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the heat rejected in a perfect thermodynamic engine, working
with a source and refrigerator at the higher and lower of the

temperatures respectively.'
1

Expressed in symbols, this gives

=
A) V

where ^ and t are the absolute temperatures of the source and the

condenser, respectively.

294. The Indicator Diagram. The indicator diagram was

introduced by Watt for purely practical purposes. It is, neverthe-

less, as we shall shortly see, susceptible of numerous important

applications in pure science.

The diagram exhibits the relation between the pressure and the

volume of the working substance used in any heat engine ; and

hence it shows the work done in a complete stroke of the engine.

aMN
FIG. 162.

Let the curve APQBK (Fig. 162) represent the relation between

the pressure and the volume at all stages of the stroke pressure
and volume being respectively measured along the rectangular axes

op and ov. Let the co-ordinates of the point P be PM=p, OM. = v ;

and let those of Q be QN=p', ON^v'. When P and Q are

indefinitely near each other, the product (p+p'} (v'-v) represents
twice the area PMNQ. But, neglecting small quantities of the

second order, half this product may be written p(v'v}. This

latter product therefore represents the elementary area PMNQ.
Now the work done by a force /, acting through a distance s, is

( 62) fs ; and the whole force which acts upon the piston in the

cylinder of the engine is pa, where a is the area of the piston, and

p is the pressure per unit area, so that pas represents the work done
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when the piston moves through the small distance s under the

action of the pressure pa. But as is the small change of volume of

the contents of the cyclinder which is produced by that pressure ;

and therefore the work done is represented by the area PMNQ.
Let A be the point at which the volume has its smallest value, v

,

and let B be the point of maximum volume, v lt As the volume

expands from v to vv the state of the substance being represented by
a point which moves along the path APQB, the work performed is

represented by the area Aa&BQPA. Similarly, when the volume

is diminished from v1 to -y
,
the point moving from B to A along the

path BRA, the work expended in producing compression is repre-

sented by the area BRAa&B. The difference of these two areas,

viz., the curvilinear area APQBRA, therefore represents the work

which is expended, on the whole, during a complete stroke of the

engine. Consequently, when the path is described in the positive

direction, work is expended on the whole. This case corresponds to

the reverse working of a reversible engine.

When the closed path is described in the negative direction, work

is performed on the whole by the engine to an extent which is repre-

sented by the total area enclosed by the path. [The actual path might
consist of a number of closed loops. In this case, each loop is to

be considered separately, and the sum of the areas each with the

proper sign attached, according as it is described positively or nega-

tivelyis to be taken in order to estimate the total amount of work

performed.]
295. Applications of the Indicator Diagram. We shall now

consider the application of the diagram to the discussion of the

working of Carnot's engine.

For this purpose we must give the closed curve a special form.

In the second and fourth direct operations of Carnot's cycle ( 290),

the substance was maintained at constant temperature ;
in the first

and third, no heat, as such, was allowed to pass out of it or to enter

it. If, therefore, the points D, A, B, C (Fig. 163) represent respect-

ively the values (p ,
VQ ; p lt Vi ; p.2 ,

v.2 ; ps , u<) of the pressure arid

volume of the substance at the commencement of the first, second,

third, and fourth operations respectively, all points on the line DA
(which represents the varying state of the substance as it passes

from the state (p01 t>
,

t ) to the state (plt vlt tj are characterised by
the condition that no heat, as such, enters or leaves the working sub-

stance ;
all points on the line AB represent states in which heat is

absorbed during the passage from the condition A to the condition

B in order that the temperature may retain the value ^ ;
all points

on the line BC represent states in which, again, no heat enters or
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leaves the substance ; and all points on the line CD represent states

in which the temperature of the substance is, by disengagement
of heat, maintained at the value t .

Lines such as AB or CD are therefore called "isothermals, while

lines such as DA or BC are called adiabatics. , The latter name,
which is due to Rankine, simply implies that no heat is absorbed or

emitted.

But although heat, as such, neither enters nor leaves the sub-

stance in the adiabatic condition, mechanical work is performed or

FIG. 163.

expended ; and so, by transformation, the amount of heat contained

in the substance is actually varying.
If the amounts of heat contained in the substance, in the states

A and D, were identical, and if the amounts in the states B and C
were identical, the amounts of heat which leave the substance in

the processes represented by AB and DC would necessarily be

equal. But we know that these quantities are (by our definition) in

the ratio

tj_
and t being absolute temperatures.
Now ABCD represents the work which is performed in the direct

cycle. It therefore, by the principle of conservation of energy,

represents the quantity of heat 7 1 7t . And, if we/arrange matters
so that 7ii-7z = l, equation (1) shows not only that t 1 m^islQbe
equal to unity, b^a^gp^that hi = tlt and h =t . V

Let us therefore intersect the diagram (Fig. 164) by a series of

isothermals A!A2A3 ..., BiB2B3 ..., etc., and by a series of adiabatics

AiBiCj..., A2B2C2 ..., etc. ; and let the temperature corresponding to

. be one degree below that corresponding to
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while the adiabatics are so arranged that the magnitude of each area,

such as A1A2B B1 ,
is unity. If we could continue this construction

down to the absolute zero of temperature, each area included between

any isothermal, the isothermal of absolute zero, and any two con-

secutive adiabatics, would be numerically equal to the temperature

indicated by the higher isothermal.

FIG. 164.

The experimental data necessary to the correct completion of the

diagram are wanting, but its correct completion is not necessary to

our present purpose. The following method of completing it is due

to Maxwell.

Let us suppose that CiC 2C^ ... is the lowest isothermal whose form

is correctly known. Draw any line K1K2K3 ...to represent the

isothermal of absolute zero, and complete the adiabatics in such

a way that each of the areas C^B^Co, C
3
K2K3Cj,, etc., is numerically

equal to the temperature to which the line C^C.^ ... corresponds.
In order to determine the position of the absolute zero, it is only

necessary to find the ratio of any two areas such as AjKjE^A,, and

CiKxKgCa. The method by which Thomson and Joule solved this

problem is described in 303.

296. Applications of the Indicator Diagram. Entropy. The one

set of lines with which we have intersected the diagram are

characterised by constancy of temperature. The other set of lines

are characterised by the condition that no heat shall be transferred

from the working substance to its surroundings, or from the sur-
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roundings to it. But we have seen that heat does pass from, or

into, the substance by transformation. We have still to inquire,

therefore, What quantity remains constant during adiabatic expan-
sion or contraction ?

Equation (1) of last section enables us to answer the inquiry. It

gives

whatever values ^ and t may have ; that is to say, when the sub-

stance passes isothermally from any one definite adiabatic state to

any other definite adiabatic state, the quantity of heat which is

absorbed, or disengaged, bears a definite ratio to the temperature at

which the absorption, or disengagement, takes place.

This constant quantity h/t may therefore be regarded as the

amount by which some quantity, 0, which is characteristic of the

substance in the adiabatic state, changes in passing from the one

adiabatic condition to the other at constant temperature t. This

suggests the extension of the meaning of the quantity h to signify

the total heat contained in the substance, so that we may define

by the equation

H

where H represents the total heat.

The quantity was first called, by Kankine, the Thermodynamic
Function. Clausius called it the Entropy, and this name has been

generally adopted.
If one substance parts with an amount of heat, h, at temperature

t, to another substance at temperature t
,
the entropy of the former

substance decreases by the amount hjtlt and that of the latter

increases by the amount Jijt . The total gain of entropy by the

system is therefore

The quantity of heat which is absorbed in the second operation of

Carnot's direct cycle is t^fa ), and the quantity which is given
out in the fourth operation is tQ (<p r

-
). The difference of those

quantities is (^ t ) (fa -<f> ), which therefore represents the work
done in the complete cycle.

297. Applications of the Indicator Diagram. Total, Available,
and Dissipated Energy. We have no means of determining

experimentally the total amount of energy in a given system. But,
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in any practical case, we only require to determine the change of

energy which takes place in the given operations.

The indicator diagram' enables us to represent the total amount of

energy in a way which, though obviously incorrect, leads to a

correct representation of the change of the total energy of the system
which is produced by a given change in its physical condition.

Let the points A and B (Fig. 165) represent respectively the initial

and the final conditions of the system, and let the path AB represent
the series of changes by which the final condition was arrived at.

[The diagram is constructed so as to exhibit the case in which there

M N S

FIG. 165.

is both disengagement of heat and performance of mechanical work.]

Let BE' represent the (arbitrary) isothermal of absolute zero, and

let it be continued so as to cut the axis of volume in the point S.

As the point which traces out the diagram moves from A to B,

external work, which is represented by the area ABNMA, is per-

formed, and at the same time, 295, an amount of heat is dis-

engaged which is represented by the area ABK'BA. The whole

area AMNBB'BA, therefore, represents the total loss of energy

which the working substance has sustained. We may, therefore,

as Maxwell suggested, regard the areas AMSKA and BNSB'B, re-

spectively, as representing the total amounts of energy which are

contained in the working substance in the conditions indicated by A
and B respectively.

It is specially to be noticed that the amount of energy which is

lost in proceeding from A to B is totally independent of the path

AB, and depends only on the initial and final conditions of the

substance.
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Let us assume now, as a special case, that BC represents the

lowest available temperature. We may then cause the substance

to pass from the state A to the state B along the path ACB. The
work performed will then be represented by the area ACBNMA,
which area therefore represents the total amount of energy which is

available, under the given conditions, for the performance of me-

chanical work. Similarly, BCEE'B represents the heat which is

necessarily given to the condenser, i.e.. the amount of energy which

is necessarily dissipated so far as the performance of work by the

given system is concerned. The energy which is unnecessarily

dissipated is represented by the area ACB.
298. Thermodynamic Motivity. We have seen that, when a

quantity of heat, 7^, is given out by a body at temperature tlf the

entropy diminishes by the amount 7*1 / 1 . We may therefore repre-

sent the total loss of entropy of a system which consists of a number
of sources which are emitting heat at various temperatures by the

symbol

2

Similarly, if the heat emitted by these bodies is given to other

bodies included in the same system, we may denote the gain of

entropy from this source by

The total loss of entropy is therefore

\Y^i_ *

Deleting the suffixes, we may denote this simply as

and our definition of absolute temperature shows that this vanishes

wlien a perfect engine is used. When any other engine is used,

heat is always lost by conduction or otherwise, "so that the heat

which is given to the condenser (or is otherwise wasted) is greater
than h . Hence, in all actual cases of the transformation of heat

into work we must write

A

instead of sf^_:H
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where ~k is greater than unity, as the proper expression for the loss

of entropy. This is equal to

which is necessarily negative, since k is greater than unity ;
and so

we prove Clausius' theorem that the entropy of the universe tends

to a maximum.
The amount of heat utilised by a perfect heat-engine is

( 293)

Or 7*, -^.
fi

If a number of such engines work between the various parts of a

complex system, the heat which is not given to the condenser is

where 2(7*,) now takes account both of the heat which is taken from

each body by some of the engines, and of the heat which is given to

it by others.

In a perfect engine, the heat which is not given to the condenser

is represented by 2(7*,) alone, and is entirely converted into work ;

which again shows us that, for such an engine,

t(*

must vanish. In all other cases, 2(7*,) represents the part of the

heat which is utilised in the performance of mechanical work, and

the second term (which we must remember is necessarily positive)

represents the portion which is unnecessarily wasted. The quantity

therefore represents the heat which is dissipated in the process.

Thomson has tailed the total energy which could be made avail-

able for mechanical work by a perfect engine under given condi-

tions, the Thermodynamic Motivity of the system. If we have a

medium external to the given system, which may be used as a con-

denser, the motivity is the whole amount of work which can be

obtained by the perfect engine in reducing the temperature of the

system to that of the external medium. If the engine works so as

to equalise the temperatures of the various parts of the system, the

motivity is the whole amount of work which can be so obtained.



THERMOrYNAMICS : HEAT AND WORK. 369

Let t be the final temperature, and let h be a quantity of heat

taken from a body at temperature t. The motivity, so far as this

quantity is concerned, is

and, to obtain the total motivity, we must sum all such quan-
tities.

The total energy, e, in any system is equal to the sum of the

motivity, ra, and the dissipated energy of that system. If is the

entropy, 9 the temperature, and J the mechanical equivalent of

heat, the dissipated energy is J00. Hence, if the system passes

from a state indicated by the suffix 1 to a state indicated by the

suffix 2, we get
m

l
- m.2= e

l
- ez

No change can take place of itself in the system unless thereby

the motivity be decreased that is, unless m1
- m.2 be positive. But

m^m^ may be positive, although el e% is negative, provided that

0.2
<
2 is sufficiently greater than 0^. Hence we see that a given

chemical action may take place of itself with absorption of heat,

provided that a sufficient amount of energy be dissipated in the

process. (See 280.)

24



CHAPTEK XXVI.

THERMODYNAMICAL RELATIONS.

299. IN the course of the discussion, in last chapter, of the con-

nection between heat and work, we were led to consider five quan-
tities in terms of which the physical condition of a substance may
be represented. These quantities were the energy, e ; the entropy,

;
the pressure, p ; the volume, v ; and the temperature, t.

But we were also led to see that the physical condition of the sub-

stance was completely determined when two of these quantities, p
and v, were given : for, on the indicator diagram, we could lay

down lines of constant temperature, of constant entropy, and of

constant energy. The total values of the two latter quantities were

not, it is true, indicated
;
but that was due to a defect in our know-

ledge, and not to any defect necessarily inherent in the diagram.
It at once follows that the variation of any one of the five quan-

tities can be represented in terms of the simultaneous variation of

any two of the rest. Thus we may write

..... (1).

de=fdt + gdv, ..... (2).

de=mdt+ndp, ..... (3).

and so on.

300. We shall first consider equation (1). If the volume be con-

stant we obtain de= ad<{>. But we know that, under constant volume,
the energy increases by the amount (in dynamical units) of heat

which has been supplied ; and we also know, by the results of last

chapter, that this amount is td<j>. Hence a = t. Similarly, if no

heat be supplied, so that remains constant, (1) becomes de= bdv.

But under these conditions the energy diminishes by the amount of

external work which is performed, that is, by the amount pdv.
Hence b= -p, and (1) becomes

de= td<f>-pdv ..... (4).

/ de\ , (de\
This gives (

=
t,

)

= -p.
\dJ, \&>f+
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The suffixes denote respectively that the volume and the entropy are

constant ; so that the former equation asserts that, at constant

volume, the increment of the energy is equal to the heat supplied ;

while the latter asserts that, under adiabatic expansion, the decre-

ment of the energy is equal to the amount of work which is per-

formed. These equations therefore express the conditions upon
which we deduced (4) from (1).

From them we get

e_= (dt
\

d(j> \dv)dvd(j> \dv $ d<l>dv~

WMehgive ()--(*), ....... .(5)

where we may dispense with the suffixes. If the right-hand side of

this equation be simultaneously multiplied and divided by t, the

denominator represents the amount of heat which is -supplied, at

constant volume, in order to produce the variation, dp, of pressure.
If dp and td<j> are positive, dtjdv is essentially negative. Hence the

equation asserts that substances which, at constant volume, have

their pressure raised (or diminished) by the application of heat,

will fall (or rise] in temperature during adiabatic expansion ; and
the change of temperature, per unit change of volume, is numeri-

cally equal to the product of the absolute temperature into the

change ofpressure per unit of heat supplied.
We may now combine with equation (1) the equation

d(pv) =p

as the result of which we get

d(e+pv) = td<l>+vdp ......... (6).

From this we deduce, as above, the result

If dt and dp are both positive, dv and
d<f>

are necessarily of the

same sign. Hence, multiplying and dividing the right-hand side by
t, we see that substances which expand (or contract), under constant

pressure, when heat is supplied to them, rise (or fall) in tempera-
ture when they are subjected to adiabatic compression; and the

change of temperature, per unit increase of pressure, is equal to

242
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the product of the increase of volume at constant pressure, per
unit of heat supplied, into the absolute temperature.

If we now combine with (1) the equation

we obtain

d(e-t<j>)=-<pdt-pdv ........ (8).

Therefore

dvJ~\dtJ
" (9)>

Multiplying each side of (9) by t we see that substances, which
absorb (or emit) heat when their volume increases isothermally,
have their pressure, at constant volume, raised (or diminished) by
increase of temperature ; and the change of pressure, per unit rise

of temperature, is equal to the quotient by the absolute tempera-
ture of the heat which is absorbed (or emitted).

Let L represent latent heat, and let v' v represent the change of

volume of unit mass of the substance when it changes its state. In

this case (9) becomes

t(v'-^v)

:

from which we can calculate the change of the melting-point, or the

boiling-point, which results from a given change of pressure.

Combining (8) with

d(pv) =pdv+vdp,
we find

d(e-t$+pv)= -tydt+vdp, (10),

which leads to

This tells us that substances which expand (or contract) under con-

stant pressure when their temperature is raised emit (or absorb)
heat in order that their temperature may remain constant ivlien

the pressure is increased; and the heat which is evolved (or

absorbed) per unit increase of pressure is equal to the continued

product of the temperature, the volume, and the expansibility.
For the expansibility is Ifv . dv/dt.

301. In equation (2) the quantity/ represents the rate at which

the energy increases, per unit increase of temperature, at constant

volume. It therefore represents the specific heat at constant
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volume, which we have already denoted by the symbol c. Hence
we have from (1)

cdt= td<}>,

with the condition dv = 0.

These equations may be written in the form

=

But the quantity

is evidently the specific heat at constant pressure, hitherto denoted

by k. Hence (12) becomes

dp ........... (14).

Now the condition dv=Q necessitates a certain relation between

dp and dt
; but we can eliminate these quantities from (13) and (14).

Thus fc-^/T^f^)-
(dv\ \dtJp

By (11) this becomes

To apply this result to the case of a perfect gas we must find the

values of

(I) -d (?)^dth \dpJi

from the equation pv=Ht.

mu . (dv\ R _ fdv\ Rt
This gives (

-
)
=

, and I
)
= - -

,\dth p \dph p2

whence fe-c = R. (16).
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The difference between the two specific heats is therefore constant ;

and, since the values of both k and R can readily be found by

experiment, c (the experimental determination of which is very

difficult) can be calculated by means of this relation. (See 271.)

302. The equation connecting the pressure, volume, and tem-

perature of a perfect gas is pv = R. It will be useful to determine

the relation between the pressure, the volume, and the entropy of

such a gas. We have

where td^jdt is obviously the specific heat at constant pressure,

and, by (11), d$ldp is equal to dv/dt at constant pressure, which

again is equal to R/j?, i.e., to (7t c)/p. Hence

dt n .dp^ = &T -(&-c) ,

t p

the integral of which ( 38) is /'* )

t+(1c-c)logp,

where a (and therefore log a) is a constant. We may write this in

the form

But t is equal to pvfR, whence

A being equal to aR*. Thus, instead of pv = constant, we must write

*

pv
c= constant

when adiabatic compression or expansion takes place.

303. When air is compressed by the sudden application of

pressure, the heat developed is almost precisely equivalent to

the work which is spent in producing the compression. Joule

proved this by enclosing air in a strong vessel which could be

placed in communication with another vessel, of the same size,

which had been exhausted of air. Both vessels were placed in a

large mass of water the temperature of which was accurately

determined. When a stopcock in a tube connecting the two vessels

was opened, the air rushed from the one vessel into the other so as

to equalise the pressure throughout. The temperature of the vessel

containing the expanding air was lowered, for work had been done

during expansion, so that the air was cooled. That of the other
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vessel rose, for the violent impact of the air which rushed into it

caused the development of heat. But the amount of heat which

was absorbed in the one case was almost precisely equal to that

which was evolved in the other, for the surrounding water, which

was well stirred, showed no appreciable change of temperature.
A more accurate form of this experiment was subsequently

adopted by Joule and Thomson in their researches on the thermo-

dynamical properties of gases. The gas under investigation was
made to pass very slowly through a tube, in which a plug of cotton

wool was placed, and its pressure and temperature on both sides of

the plug were observed.

The preceding methods lead to a simple equation connecting
the changes of temperature and pressure with the volume, the abso-

lute temperature, and the expansibility of the substance. The

expansibility may then be expressed, by means of Charles' Law, in

terms of the temperature on the Centigrade scale, if the range of

temperature be so small that the Centigrade and the absolute

degrees are practically equal throughout its extent; so that the

equation gives a direct comparison of the absolute and the Centi-

grade scales.

Boyles' and Charles' Laws give ( 266) for a perfect gas T =

+ l/a, where T is absolute temperature. The investigation just

alluded to gives

where
;//,

as Thomson and Joule's experiments indicate, is, in true

gases, a small quantity generally positive.

The experiments showed that all the true gases except hydrogen
were made colder by their passage through the plug, and indicated

that the absolute zero is about 273'7 C.

304. The truth of the Second Law of Thermodynamics ( 292)
rests entirely on the immensity of the number of particles con-

tained in any portion of matter which is of a size comparable with

the dimensions of our instruments and machines. An ordinary

thermometer, placed in any position in a mass of air,might indicate

uniformity of temperature ; while another thermometer, sufficiently

small in size, might (rather, would) indicate rapid variations of

temperature, and might even show that heat was passing from cold

parts to hot parts of the given mass. For, the quickly moving mole-

cules might occupy on the whole one portion of a volume so small

as to contain only a few molecules, while the slowly moving
molecules occupied the remainder ; and some of the slowest of the
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quickly moving molecules might be exchanged for such of the slowly

moving molecules as were actually moving more quickly than they
were.

An average uniformity is preserved on the large scale, though, on
a sufficiently small scale, it does not obtain. It is because of this

average uniformity that the statement that a heat-engine cannot

continually draw the heat which it transforms into work from a

body colder than its condenser which Thomson made the basis of

the Second Law of Thermodynamics is true.



CHAPTER XXVII.

ELECTROSTATICS.

305. Electrification by Friction. When a rod of glass is rubbed

with flannel or, better, with leather coated with a paste of zinc

amalgam it acquires the property of attracting surrounding bodies.

Light bodies, such as pieces of paper, can even be raised up by it

against the attraction of the earth. When in this state, the glass is

said to be electrified or it is said that electricity has been

developed upon the glass.

If the glass had been rubbed with cat's-skin or with any one of

several other substances, similar effects would have ensued ; but the

extent to which electrification is developed depends upon the nature

of the substance which is used as a rubber.

The glass may be replaced by sealing-wax, resin, ebonite, etc.,

and the phenomena will still be exhibited to a greater or less

extent.

In all cases it is necessary for success that the substances shall

be well warmed and dried.

306. Conductors and Non- Conductors. If, instead of a glass

rod or a rod of sealing-wax, we take a metallic rod, no electrical

effects are in general observable ;
and many other substances also

are incapable (unless special means are adopted, 324) of being
electrified by friction.

We are thus led to divide all substances into two classes according
as they are or are not electrifiable by friction in the usual way.
Those of the former class are called Insulators, Dielectrics, or

Non-conductors; those of the latter class are called Conductors.

The latter terms are applied because it is found that all substances

which cannot usually be electrified by friction have the power of

allowing electricity to flow along them, while the other class of sub-

stances prevent such flow.

307. Fundamental Phenomena presented by Electrified Bodies.

The substances which are attracted by an electrified body are not
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necessarily non-conductors. In order to investigate the subject

further we shall suppose that a pith-ball (which is a conductor,

and is at the same time very light, so that the effects to be observed

are easily seen) is the body to be attracted, and we shall suppose

it to be insulated by being suspended from a dry glass rod by means

of a dry silk thread.

If an electrified glass rod be brought into the neighbourhood of the

pith-ball, the ball will be drawn towards it
;
and this will also take

place when electrified sealing-wax is presented.
Now let the glass rod be brought so near that the ball comes in

contact with it. Immediately after contact the ball is violently

repelled by the glass ; but, if the ball be touched with the hand,

attraction will again occur
;
and the same phenomena will happen

when electrified sealing-wax, or any other electrified body, is used.

Still, though all electrified bodies produce this effect, a slight modifi-

cation of the experiment will bring to view a profound difference in

the nature of the electrification of different substances.

Instead of touching the pith-ball when it is repelled by the glass,

let the electrified sealing-wax be presented to it. Strong attraction

becomes apparent. Similarly the electrified glass will attract the

ball when the sealing-wax repels it. And all substances which can

be electrified by friction can be classified according as they act in

this respect like glass or like sealing-wax.
308. Positive and Negative Electricity. In order to explain

these phenomena we make the following assumptions : 1st. There

,are two ' kinds '

of electricity ;
2nd. Like kinds repel each other,

unlike kinds attract each other ; 3rd. The attraction and repulsion

diminish as the distance increases ; 4th. An unelectrified body may
be' looked upon as a body which contains equal amounts of both

kinds of electricity, which can be separated, to a greater or less

extent, by means of the action of electrified bodies.

Let us distinguish the electricities developed on glass and sealing-

wax as positive and negative respectively. When the positively

electrified glass rod is brought near to the unelectrified pith-ball,

we assert, in terms of our hypothesis, that the neutral electricities

in the ball are separated, negative electricity coming to the side

near the glass, positive electricity being repelled to the far side. The

attraction between the unlike kinds is stronger than the repulsion

between the like kinds, for the former are at a less distance apart.

Hence the pith-ball moves towards the rod, for the electricity is

confined to it and so cannot further alter its distance from the elec-

tricity of the rod unless the ball moves. If contact takes place, the

negative electricity, which has been induced (as the phrase is) in
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the ball, unites with a portion of the electricity of the rod, so that

the ball is now charged with positive electricity, and is therefore

repelled from the rod until it loses its charge (say, by repulsion to

the ground when the observer touches the ball).

The same reasoning, with the interchange of the words positive

and negative, applies when sealing-wax is used instead of glass.

Finally, the ball which has touched the glass rod is positively

electrified, and is, therefore, attracted by the sealing-wax ;
and the

ball which has touched the sealing-wax is negatively electrified, and

so is attracted by the glass rod. All the phenomena are thus ex-

plained by means of our assumptions.
In the fourth assumption it was stated that an unelectrified body

contains equal quantities of both kinds of electricity. In accordance

with this assumption, it may be proved, by the methods to be

shortly described, that the rubber which is used to produce electricity

by friction becomes electrified to exactly the same extent as the

rod which is rubbed, but with the opposite kind of electricity to that

which is developed on the rod.

At one time it was customary to speak of electricity similar to that

usually developed on glass as '

vitreous,' and of electricity similar to

that which is produced on sealing-wax and other resins as '

resinous,'

electricity. The mere fact that the so-called resinous electricity

may be obtained from glass is sufficient proof of the undesirability

of this classification. The terms positive and negative, as we have

employed them above, are much preferable, for the words imply

nothing but a distinction in kind.

The phrase
' kind of electricity

'

is very apt to be misleading.
We do not yet know what electricity is. One would never dream
of saying that the resultant positive and negative forces which con-

stitute a stress are essentially different from each other, or that

left-handed (positive) rotation is intrinsically different from right-

handed (negative) rotation. Yet equal and opposite forces, and

equal and opposite rotations, annul each other's effects. The terms
'

positive electricity
' and '

negative electricity
' are merely adopted

in order to enable us to consistently and concisely describe and (so

far) explain certain phenomena.
The use of the old expression

' electric fluid
'

is to be carefully

avoided.

809. The Gold-leaf Electroscope. An electroscope is an instru-

ment which is used to indicate the existence of electrification. If,

in addition, the instrument measures the magnitude of the electrifi-

cation, it is called an electrometer.

The gold-leaf electroscope is one of the most delicate of all electro-
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scopes. It consists of two pieces of gold-leaf a, a (Fig. 166), which

are connected, by means of a metal rod, to a metal head h. The rod

passes through the top of a glass vessel in the manner indicated in

the diagram. The glass vessel is open at the bottom, and contains a

FIG. 166.

wire cage which surrounds the gold leaves. The cage can be

placed in connection with the ground by means of the metallic con-

nection 6. The use of this cage will appear afterwards ( 316) ;
in

the meantime we are merely concerned with the manner of using

the instrument and the nature of its indications.

If a positively electrified body be brought into the neighbourhood
of the head h, negative electricity is drawn towards the head, and

positive electricity is repelled into the leaves, which diverge, since

they are similarly electrified. The closer the body is brought to the

head, the more widely do the leaves diverge ; and, when the body is

withdrawn, they collapse.

If, while the leaves are still diverging because of the presence of

the electrified body, the head h be momentarily touched by the

hand, instant collapse of the leaves will ensue (for the positive

electricity escapes from the leaves through the hand to the ground),
and the state of collapse will continue so long as the electrified body
is not withdrawn. But when the body is withdrawn from the neigh-
bourhood of the head, the leaves once more diverge ;

for the nega-
tive electricity which was drawn to the head of the instrument now

spreads in part through the metal rod into the leaves. The latter

therefore are diverging with negative electricity.

In this condition the instrument can be used to indicate the

nature of the electrification of any body which is brought into the

neighbourhood of the head h. If the body be negatively electrified,

more negative electricity will be repelled into the leaves which will

therefore diverge more. If it be positively electrified (or unelec-

trified), the negative electricity is drawn from the leaves which then



ELECTROSTATICS. 381

collapse; and if the positive electrification be sufficiently strong,

some of the neutral electricity in the rod will be separated, and the

leaves will diverge because of being positively electrified.

The interchange of the words positive and negative in the above

reasoning will enable it to apply to the case in which a negatively
electrified body is originally brought near to the head of the instru-

ment.

It is obvious that these experiments are, in large part, merely a

modified repetition of those which were discussed in 307.

310. Electrification by Contact and by Induction. Electric

Quantity. In 308 we have spoken of the electricity which is in-

duced upon a conducting body because of the presence of another

electrified body. So long as contact does not take place between

the two bodies, the total amount of induced electrification is zero, a

certain amount being drawn to one side of the body, while an equal
amount of the opposite kind is repelled to the other side. But

whenever contact occurs, the attracted electricity unites with some

of the electricity in the inducing body ;
and so the conductor is

electrified with the same kind of electricity as that which the induc-

ing body possesses. It is then said to be electrified by contact.

The total effect is the same as if the inducing body had given some
of its electricity to the conductor, and it is usual to say that it has

done so ; for we cannot distinguish one amount of electricity from

any other equal amount.

In the process of electrification by contact, the one body loses a

certain amount of electricity, while the other gains an equal amount.
This can be proved by means of measurements of the forces of

attraction or repulsion which they exert upon an electrified body
the electrification of which does not alter. In fact, we can electric-

ally iveigli out equal amounts of electricity, just as we can gravita-

tionally weigh out equal amounts of matter. We are therefore

justified in speaking of electricity as a thing which can be doled out

in measurable quantities ;
and it is usual to say that an electrified

body is charged with electricity, and to call the total quantity of

electricity which it possesses its charge.

Suppose, now, that we have a charged body charged positively,

let us say. It is possible by its means to charge other bodies,

either positively or negatively, to any desired extent and that

without any reduction of its own charge.
Let A (Fig. 167) be the positively charged body, and let B and C

represent two of the other bodies, of wfcich B is to be negatively

charged, while C is to be positively charged. Each of the three

bodies being well insulated from other conductors,. place B and C in
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contact in some such position relatively to A as is indicated in the

figure. Then let B and C be separated : B will be charged

negatively, while C will have a positive charge. Greater effects

would be produced, if necessary, by placing B and C at a con-

siderable distance apart, and joining them by a thin conducting
wire ; for the effect of the charge in A is largely counteracted by

FIG. 167.

the mutual attraction between the positive and negative elec-

tricities in B and C ; and this mutual attraction is diminished as

the distance between B and C increases. In practice, it is con-

venient to let C be the earth, and to place B in connection with it

by means of a metallic wire or other conductor. In this case the

repelled positive electricity in C is practically at an infinite distance.

We may then use the body B, instead of A, if we wish to charge

any other body negatively.

This process, in which the inducing body does not lose any of its

charge, is called charging by induction.

The induced charge is, except in one special case ( 316), less

than the inducing charge.
311. Continued Production of Electricity. The Electropliorus.
In last section we saw how it is possible to obtain a positive or a

negative charge at will by means of a single insulated charged

FIG. 168.

body and two conductors. The instrument, based on this principle,

which is generally used for the purpose, is the electropliorus. It

consists of a flat, circular, cake of resin, contained in a shallow

metal vessel db (Fig. 169). The resin is slightly warmed, and is

electrified negatively by friction with cat's skin. A metal disc cd,

insulated by means of a glass handle, is used instead of the con-
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ductor B of last section, while the earth takes the place of the

conductor C.

As the metal disc is brought near to the electrified resin, positive

electricity is induced on its near side and negative electricity is

repelled to its far side
;
and the more closely the disc is approached

to the resin, the greater is the resultant separation of electricity.

When the disc is laid upon the resin, contact is made between

it and the ground by means of a metal pin which passes through
the centre of the cake of resin and is connected with the metal

vessel enclosing it, and therefore with the ground upon which the

vessel rests. The negative electricity escapes to the ground, and

the disc is left charged with positive electricity, the charge being

practically equal to that on the resin.

The disc may now be lifted away, and positive electricity can be

communicated by contact from it to any conductor ; and the process

may be repeated from the beginning.

Two points in this explanation may present some difficulty. It

may appear that the negative electricity of the resin should be

destroyed whenever the disc is placed upon the surface of the cake ;

for the induced positive electricity in the disc would combine with

it, and then the remaining negative charge in the disc would pass
to the ground through the metallic connecter. This would really

happen if the two surfaces came in contact throughout their whole

extent ; but, because of inequalities, they only touch over a com-

paratively small area. Again, the negative electricity in the disc

is repelled by the electricity on the resin. How, then, can it pass
to the ground by a connection which passes through the resin ?

We cannot be content with the reply that the disc and the earth

are then both parts of one conductor, so that a road is opened up
by which the electricity can get to a greater distance from that

which repels it. This statement seems very like a statement to

the effect that a stone would roll a short distance up one side of a

hill, in order that it might get a longer roll down the other side.

The fact that electricity flows like an incompressible fluid
( 335)

makes an explanation easy. There are three parallel layers
of electricity in the apparatus two negative layers with one

intermediate positive layer. The lower negative layer tends to

draw positive electricity from the ground ; the intermediate positive

layer repels it ; and we are left with the upper negative layer which
attracts it. We may suppose, therefore, that the negative layer
on the upper side of the disc draws positive electricity from the

ground and unites with it. The earth is consequently left with an

equal negative charge, and the effect cannot be distinguished from
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that which would have ensued npon an actual passage of the negative

electricity of the disc to the ground. We have no means of dis-

tinguishing between the two cases, and therefore we are justified

in saying that the electricity does pass from the disc to the ground.

Returning from this digression, we remark that the production
of electricity by means of the electrophorus becomes more and

more continuous the more rapidly the various motions of the disc

are performed. The principle of all machines used for the produc-

tion of a statical charge is the same as that of the electrophorus,

but they are so constructed as to give a strictly continuous

production.
312. Law of Electric Attraction and Repulsion. We have

hitherto explained the various facts which have come under our

consideration by the assumption of attractive or repulsive force,

which diminishes in intensity as the distance between the attracting

or repelling quantities increases ; and we found that the assumption
enabled us to give a consistent account of the facts. Therefore,

adopting this assumption as a working hypothesis, we must now
consider more minutely the exact law of force.

The law was elaborately investigated by Coulomb by means of his

torsion balance. In this instrument a vertical wire attached to the

FIG. 169.

torsion-head h (Fig. 169) carries a horizontal insulating arm, at the

end of which a small metal disc d is fastened.

A scale fastened to the glass cover which surrounds the instru-

ment enables us to determine the angular position of the arm ;
and

the position of the torsion-head, when there is no torsion on the

wire, is also noted. Now let a positive charge be given to the disc

d, and let another positive charge, contained in a metal ball fixed to
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an insulating handle b, be introduced into the interior through the

aperture a in the glass cover of the instrument, the length of the

handle being such that the ball and the disc are in one horizontal

plane. The mutual repulsion of the two quantities of electricity will

cause the arm to twist round through a certain angle. Additional

torsion is then put on the wire, by turning the head round, until the

disc is brought back to its former position.

Now increase the charge in the ball in any ratio and repeat the

same series of operations, having previously turned back the torsion-

head into its old position. It will be found that the torsion, which

must now be put on the wire in order to turn the disc back to its

first position, is increased in the same ratio. This proves that the

force is proportional to the quantity of electricity in the ball, and

therefore, also, that it is proportional to the quantity in the disc.

Next, perform a series of experiments in which the charges of both

bodies are kept constant, while their mutual distance is varied.

The amount of torsion which is requisite at the different distances

will show that the force varies inversely as the square of the

distance.

The same law will be found to hold when the charges are nega-

tive, and also when one is negative and the other positive. Of

course, in the latter case, the angular rotations of the arm and the

torsion-head are necessarily reversed in direction.

Let q, q', be the quantities, and let s be the distance between
them. The law of force is expressed by

where the positive sign corresponds to repulsion and so indicates

that the force is attractive (i.e., is in the direction of decreasing dis-

tance) when q and q' are of opposite sign, and that it is repulsive

(i.e., is positive outwards) when they are of like sign.

This is the well-known law of gravitational force, and,therefore all

results which we have deduced (Chap. VIII.) regarding that force will

at once apply to the case of electric force, provided that we take

account of a possible reversal of sign.

813. Electric Potential. Electromotive Force. If we attempt to

increase the charge of an insulated conductor by any stated means
in which the same conditions are maintained, as in the electro-

phorus, we find that it is more and more difficult to do so the farther

the process is carried out, and that the charge cannot be increased

beyond a certain limit. To make the reason for this clear we must
make an apparent digression.

25
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Electrified systems obviously possess energy in virtue of their

electrification, for the mutual attraction or repulsion between their

various parts may be used for the production of mechanical work.

We define the Mutual Potential Energy of two systems as the

amount of work which may be obtained from their mutual repul-
sion until they are at an infinite distance apart ; and we define

the Potential at any point, due to a given electrical system, as the

mutual potential energy between the system and unit quantity of

positive electricity placed at that point. This definition makes the

sign of the potential coincide with the sign of the electrification of

the system to which it is due, and it makes the potential represent

potential energy and not exhaustion of potential energy, as in the

case of gravitation ( 95).

Let V and V be the potentials at two points which are at a dis-

tance s apart. The average force which acts so as to transfer the unit

of positive electricity from the point which is at potential V to the

point which is at potential V is (V - V) /s ; and, if dV is the change
of potential in the small distance ds measured from any point, the

actual force at that point is

_dV
ds

for our definition makes V decrease as s increases.

This quantity is the rate of variation of potential per unit length,

and is called the Electromotive Force at the given point, for it is

the force which acts so as to transfer electricity.

We see therefore that no transference of electricity can occur

between two conductors which are at the same potential.

Now we have seen that two like quantities of electricity, q and q',

situated at a distance s apart, repel each other with a force

q'g,
~*

and the force with which q acts on a unit of electricity of like

sign is

ds s'2

00

This gives

(see 35).

Now, the potential of a conductor must be uniform throughout if

the electricity which it contains is at rest, for otherwise an electro-
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motive force would act from one part of it to another. Hence we
are justified in speaking of the potential of a conductor ;

and the

above expression shows that the potential of a conductor becomes

larger and larger in strict proportion to the quantity of electricity

which it contains, being positive when the charge is positive, and

negative when the charge is negative. And it follows that the work,
which must be expended in order to bring up to a conductor a given

charge, becomes greater and greater as the charge already contained

in the conductor increases.

In particular, if the potential of the body which carries up the

new charge (the disc of the electrophorus) does not exceed a certain

fixed value, the potential of the conductor to which the charge is

given cannot be made, by this process, to exceed that fixed limit.

Therefore the charge of that conductor cannot be increased above a

fixed limit, which is the statement made at the commencement of

this section.

The potential is zero only at an infinite distance ; but, in order to

practically carry a charge to an infinite distance, it is necessary

merely to connect the conductor, which contains it, to the ground.
For the earth is a conductor which is practically at an infinite dis-

tance, and any ordinary charge which is communicated to it pro-

duces no sensible variation of its potential. (See next section.)

314. Capacity. Condensers. The quantity of electricity which

must be given to a conductor in order that its potential may be

raised by unity is called the Capacity of that conductor.

It follows at once, from the result of last section, that the capaci-

ties of two spherical conductors are in strict proportion to their

respective linear dimensions. For, since electrostatic force obeys
the same law as gravitational force ( 312) from which ( 88) we
know that the action of each quantity is the same as if it were con-

densed at the centre so far as points outside the sphere are concerned

the potential of a sphere, of radius a, is

Hence, when V= l, q = a; that is, the capacity is measured by the

radius.

The capacity of a compound conductor which consists of two
concentric spherical conductors may be made extremely great.

Let A and A' (Fig. 170) represent the two surfaces, and let their

radii be respectively a and a+r. Let A be charged with a quantity

q of positive electricity, and let A' be charged with an equal quantity
252
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of negative electricity. These two charges will spread uniformly
over the respective surfaces

( 316).

Now the potential at any point of A', due to its own charge, is

; and its potential, due to the charge of A, is ql(a+ T).

FIG. 170.

Its total potential is therefore zero
;
and so no flow of electricity will

occur if it be connected to the ground by a conductor. This proves
that if the sphere A be charged in any way, an equal and opposite

charge will be induced on A' if it be connected to the ground.

Hence, if we add a positive unit of electricity to A, a negative unit

will necessarily appear on A' when it is
*

put to earth '

to use the

technical expression. But the work done in increasing the charge

q of A by unity is q/a, and the work done in increasing the negative

charge q of A' by a negative unit is -qKa+r). Hence the whole

'work done is

a a-\-r
-*

a(a-\-T)

When T is very small, this gives q = a2
wjr ; and, when w is unity,

q represents the capacity of the arrangement, which is therefore

a quantity which may be made extremely great by sufficiently

decreasing T.

Any arrangement of this sort is called a Condenser, since it

enables us, without much expenditure of work, to store up a large

quantity of electricity. The only essential feature in any such

arrangement is that the two conducting, and mutually insulated,

surfaces shall be extremely close together in comparison with their

own dimensions.

A common form of the condenser is known as the Leyden jar. This

consists (Fig. 171) of a thin glass jar coated externally and internally

with tin-foil. The neck and upper portion of the jar are not coated
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with the foil, so that the insulation between the two conducting

sheets may be as complete as possible. The mouth of the jar is

usually closed with a cork, through which passes a metallic rod,

terminating externally in a knob, and making communication in-

FIG. 171.

ternally with the inner coating of the jar. The external coating

can be readily connected to the ground, while the internal coating

is charged, through the agency of the rod, by means of any electric

machine.

Discharge of the jar is effected by means of the discharging-rod,

(Fig. 172), which consists of two jointed metal rods connected to a

glass handle. The two knobs a and 6 are placed in connection with

the outer and inner coatings of the jar ; and the discharge, resulting

FIG. 172.

in the combination of the two equal and opposite quantities of elec-

tricity, takes place through the metallic circuit acb. Great care

must be taken in the use of jars charged to a high potential, as very

serious, if not fatal, effects might ensue upon their discharge

through the human body.

Another common form of condenser consists of a pile of sheets of

tin-foil separated by paper soaked in paraffin. All the odd sheets in

the pile (counting from one end) are connected together. So also

are the even sheets, but the odd and the even elements are carefully

kept separate. This arrangement constitutes a condenser of great

capacity.
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A practically identical arrangement may be made by joining

together all the internal coatings and, independently, all the ex-

ternal coatings of a number of Leyden jars. The capacity of the

whole is equal to the sum of the capacities of the separate jars.

If the jars be connected together in series that is, with the outer

coating of one joined to the inner coating of the next in order, and

so on the resultant capacity is only equal to the capacity of each

jar (all being supposed to be equal in this respect), and the whole

charge is equal to the charge of one jar when its coatings are raised

to the same (total) difference of potential. When the capacities are

not alike, we may let V and V
x
indicate the potentials of the outside

and inside coatings of the first jar, whose capacity in C
a ,

while

Vi and V2
are the similar quantities for the second jar, the capacity

of which is C2 ,
and so on, V being the potential of the inner coat-

ing of the last jar. If C be the total capacity, C(Vn-V )
is the

total charge. But this is equal to the sum of the separate charges.
Hence

But the charge of any one jar is necessarily equal to that of any
other ; for the outside coating of each has a charge which is equal
and opposite to that of the inner coating of the jar to which it is

joined, since the two form a single insulated conductor
;
and the

charges in the two coatings of any one jar are also necessarily equal.

Hence we have the n 1 equations

In all there are n equations connecting the 2n+ l quantities

C, d, . . ., Ca ,
V ,

____
, V,. If V =0, while the quantities d ----

Cn , are known, we can eliminate the Vs and calculate C.

315. Specific Inductive Capacity. In last section we obtained

the expression a2
/r for the capacity of an arrangement consisting of

two concentric conducting spherical surfaces of mean radius a and

separated by an insulating interval of thickness r.

It is customary to consider air as the standard insulating material.

If the air be replaced by some other insulating material, such as

glass, resin, etc., it is found that the capacity of the same arrange-

ment becomes

where K is a constant for that particular medium and is called its

Specific Inductive Capacity.
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The Specific Inductive Capacity of a substance may therefore be

determined by means of measurements of the quantity of electricity

which is required to charge a jar, of which the given substance

forms the insulating medium, up to a given potential. The ratio of

this quantity to the quantity which is required in order to raise the

potential of a precisely similar jar to the same extent, when air is

the insulator, is the value of the required constant.

Faraday determined the Specific Inductive Capacity of various

substances by measurements of potential. He used two precisely

similar and equal Leyden jars which were so constructed that the

insulating medium could be changed when desired. The coatings

of one of the two jars were insulated by air
;
those of the other were

insulated by a substance whose (unknown) inductive capacity K,

was to be found. He charged, the air jar to potential V and then

divided its charge between itself and the other jar by making
connection between their outer coatings and their inner coatings

respectively. V being the resultant common potential of the jars,

while C is the electrostatic capacity of the air jar, the equation

V'C+V'KC=VC

expresses the condition that the total quantity of electricity in tha

two jars is equal to that originally possessed by the air jar. Hence

V-V

is found in terms of the known potentials.

The value of this constant (sometimes called the Dielectric Con*

stant) might also be found by observations of the reduction of the

potential of a condensing arrangement, with a given charge, when
the layer of air between the oppositely electrified surfaces is partially

displaced by a layer of another insulating material. If t be the

thickness of the new layer, the effective thickness of air displaced

is tjK.

If vacuum be taken as the standard insulating medium, the

specific inductive capacity of air is 1-00059, according to the deter-

minations of Boltzmann. Faraday, with the apparatus at his dis-

posal, was unable to observe any difference between the inductive

capacities of different gases ; but Boltzmann has shown that small

differences really occur.

The dielectric constants of solids and liquids are greater than

those of gases and differ considerably among themselves.

316. Distribution of Electricity on Conductors. Electric

Density. A static charge of electricity, which is communicated to
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a conductor, is necessarily confined to the surface of that body. For,

otherwise, the mutual repulsion between like quantities of electricity

would produce continuous currents of electricity in the interior of

the conductor.

The fact that the electricity is at rest on the surface of the con-

ductor, also shows that the distribution must be such as to produce
a uniform potential all over the conductor.

If the conductor be spherical, we see, from the principle of

symmetry, that the surface distribution of electricity is uniform;

but if the conductor be not symmetrical, we would infer that the

quantity of electricity distributed, per unit of area, over the surface

cannot be uniform. This quantity is called the density of the

surface distribution. It is large where the curvature of the surface

is large, and is small where the curvature is small.

In order to determine the density at various parts of any surface

(whether conducting or not), we might place a small plane metallic

disc, attached to an insulating handle, in contact with the surface.

If the curvature of the surface be not too great, and if the disc be

sufficiently thin and small, the electricity on the part of the surface

covered by the disc will be transferred to the outside surface of the

disc, for it is then practically a portion of the electrified body.

The disc may then be removed, and the magnitude of its charge

may be tested. If the charge be q, while the area is a, the

density at that part of the surface is qja. The process may be

repeated as often as we please, at different portions of the surface,

BO long as the total charge of the conductor is not sensibly

diminished ;
and this objection might be entirely avoided by taking

precautions to have the potential of the conductor maintained con-

stant. As this method was first used by Coulomb, the disc is called

Coulomb's Proof Plane.

In a number of cases the law of distribution of density can be

calculated from the known electrostatic laws. Some of these cases

will be discussed in the next two sections.

In particular, it is known experimentally that a closed conductor,

which has an insulated charge placed inside it, and is connected to

the ground, will become charged in such a way that no force is

exerted at any external point by the internal and superficial charges ;

and the reason is that its potential is zero, so that the potential is

uniformly zero in all external space. Hence the surface distribu-

tion, with its sign changed, acts at all outside points precisely

as the internal charge does. Similarly the conductor screens in-

ternal bodies from the influence of external charges.

817. Electric Images. We have already seen that a uniform
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distribution of electricity over a spherical surface produces the same

effect at external points as an equal quantity of electricity con-

densed at its centre would produce. This imaginary quantity is

called the electric image of the uniform spherical distribution.

[There is a reason for calling this quantity imaginary beyond the

mere fact that it does not actually exist, and this is that the volume

density of a finite quantity of electricity condensed at a point would

necessarily be infinite, and such a condition cannot exist ( 321). J

We proceed now to the general discussion of the method of electric

images, which is due to Sir W. Thomson, and which gives in many
cases simple solutions of very formidable problems.
Draw a sphere (Fig. 173) with radius CM= &, and divide CM ex-

ternally and internally in the points A, A' repectively, so that

FIG. 173.

CA . CA' = a2
. Take any point P in the circumference of the

sphere, and join PA, PA', PC. Let PA= r, PAW, CA= d. We
know by geometry that the triangles CAT, CPA are similar.

Therefore
CA'

Now put

and we get
CA'

e'= -e
a
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But if we draw A'Q perpendicular to CA, we have QA perpen-
dicular to CQ, and therefore CA'/a=CA'/CQ = CQ/CA=a/d. Hence

a
e'= e-.

d

If a quantity e of electricity be placed at A, while a quantity e' is

placed at A', the condition e'/r' -\-e\r=0 asserts that the potential at

the point P, due to these charges, is zero
;
and therefore the sphere

is a surface of zero potential.

Consequently, if the sphere be an infinitely thin conductor, and

be connected to the ground, the action of the charge e placed at A
will induce upon it a charge, the effect of which at external points

will be the same as that of e' placed at A'
; and the charge e' placed

at A' will induce on the sphere a charge, the effect of which at in-

ternal points is the same as that of e placed at A. And further,

these two induced charges are precisely equal and similarly dis-

tributed, but of opposite sign ;
for. when the sphere is uncharged and

insulated, and the charges e and e' are placed at A and A' respect-

ively, the potential of the sphere is zero, and no resultant charge is

induced upon it, neither can electricity flow from any one part of it

to any other part.

[To find the law of distribution of density which produces this

effect, produce AP to K, describe a circle round the points E, A',

and A, and let A'P meet this circle in S. The triangles EPS and

A'PA are similar. Also PR and PS are proportional to the forces,

/ and /', at P due to e and e' respectively. For these forces are

e/r
2 and e'/r'

2
respectively, and e\r -e'/r'. Hence the forces are

inversely proportional to r and r', and therefore are directly pro-

portional to PE and PS, by construction. Consequently, the result-

ant force F at P is proportional to SE, and so SE/SP= F//'= AA'/r.

AA' AA'e2
1 AA'e'2 1

This gives F= /' = --s = -7,-
r J

e
'

r* e r'
A

Hence a sphere, the density of which is inversely as the cube of the

distance from an external (or internal) point, attracts internal (or

external) matter, as if it were condensed at that point.]

The point A' is the image of A with respect to the given sphere,

and by means of the relation CA . CA' a2
,
we can find the image

of any distribution of electricity.

For example, let there be a given distribution of electricity along

the straight line Aj A^ (Fig. 174). The image of the point Aj in a

sphere, of radius a, the centre of which is at C, is A'j, which is such
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that CAi . CA f

!
= a2

. Similarly, CA'2
=A'

2=a2
,
and so on. It is

easy to prove that the line A'iA'a is a portion of circle. But if

FIG. 174.

AiA2 is very small A^A'g is practically straight, and is inclined to

AiC at an angle equal to the angle of inclination between CjA
and AjAo.
Let CAj = r, CA'^r', A

1
Aa=Z, A'jA'^Z', and we get, as the

ratio of an infinitely small length in the image to an infinitely small

length in the direct system,

Similarly,
' and a representing areas, v' and v representing

volumes,

^_^!_r '4
. !_^L_?!l!

r4 a,
4

'

v r6 a6

Next let X, <r, p, represent line, surface, and volume densities in the

direct system, and let X', a', p' be the corresponding densities in the

image. We get

_^_e_o. r__a _r
\
~

ej~ e l'~~ r r'~r' a'

1

Similarly, ^= e
- = a

-
' =*=* ;=*=.

a e a! r a4 a3 r p a5
r's

Again, if V and V represent direct and image potentials, we get

r=ar _ a _r
r'~r r'~ r'~ a

It is upon this relation, in terms of which we can find the distribu-

tion ofpotential in the inverted system when we know the distribu-

tion of potential in the direct system, that the physical use of the

method of electrical images essentially depends.
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For example, let a sphere be charged uniformly with electricity,

and let us invert it with respect to itself. In that case, while the

image coincides with the direct system, each point outside the image

corresponds to a point inside the original sphere. But

and we know that V is constant. Hence the potential at a point

outside a uniformly charged sphere is inversely proportional to the

distance of that point from its centre.

Next, invert the uniformly charged sphere with respect to an

external point. The inverted system is also a sphere, and the

density of the distribution upon it is given by

a*=
~7*
r'

3

where a is constant. Hence the density of the image sphere varies

inversely as the distance of the centre from the point of inversion.

Further, points inside the first sphere invert into points inside the

image. Hence the potential equation shows that the potential at an

internal point varies inversely as the distance of that point from the

centre of inversion, so that internal material points are attracted as

if the sphere were condensed at the centre of inversion.

Finally, invert the uniformly charged sphere with respect to an

internal point. The density of the image sphere varies inversely as

the cube of the distance from the centre of inversion, and the

potential varies inversely as that distance, but internal points have

inverted into external points. Hence external material points are-

attracted by a sphere, whose density varies inversely as the cube of

the distance from an internal point, as if the sphere were condensed

at that point.

These three propositions have already been otherwise proved. A

comparison of the present proofs with those previously given will

exhibit to a slight extent the great power and simplicity of the

method of electric images.

318. Electric Lines of Force. As we have already seen, all the

results obtained in Chap. VIII. regarding gravitational potential

and force may be at once applied to the treatment of electrical

potential and force. We may surround a given electrostatic system

by equipotential surfaces, and we may suppose lines of force to be

drawn, perpendicular to the equipotential surfaces, in such a way
that the number of lines drawn outwards, per unit area, from such

a surface represents the electric force at that part of the surface.
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The results of that chapter then enable us to state that the density

of electricity at any point of a charged surface is l/4?r times the

number of lines of force which originate (or end) per unit area, on

the surface at that point, the density being positive or negative

according as the lines originate or end at the surface, that is,

according as they are drawn outwards from, or inwards to, it.

Similarly, the positive (or negative) volume density of electricity at

any point of space is l/4?r times the number of lines which originate

(or end) per unit of volume at that point.

Since no line of force can originate or end except at a point where

electricity is situated, and since experiment shows that no electrical

effect is felt outside a closed conductor, connected to the ground,

which completely surrounds any electrical system, we see that all

the lines of force which originate at the parts of the system must

end (except in so far as they may proceed from one part of the

system to another) upon the surrounding conductor
; and, con-

sequently, the charge induced on the conductor is equal in amount

and opposite in sign to the total algebraic sum of the various

internal charges. A particular case of this was discussed in

314.

Every line proceeds from a point at high potential to a point at

low potential. It therefore originates on a positively charged body
and ends on a negatively charged body or passes to infinity.

319. Electric Induction. Tubes of Induction. Hitherto we have

spoken of gravitational and electrical action as if it took place

directly at a distance. We have spoken of the mutual potential

energy of two systems without inquiring how one system possesses

energy in virtue of its position relatively to another. But, if we
believe that energy is transferred by means of matter

( 7), we must
look upon some intervening medium as the vehicle through which

it is transferred.

This is the way in which Faraday regarded the subject ; and most
of the development of electrical science in recent times is due to

Faraday's work together with Clerk-Maxwell's mathematical inter-

pretation and development of his views. The fact, stated in last

section, that the electrical condition of charged conductors depends

upon the nature of the intervening insulating medium gives strong

support to this belief.

In Chap. XXIX. we shall see that, when a current of electricity

flows along a conductor, the amount of electricity which crosses any
section of the conductor, per unit of time, is constant. In other

words, the flow of electricity resembles the flow of an incompressible
fluid. Similarly, the facts that no quantity of one kind of electricity
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can appear without the simultaneous development of an equal

quantity of the opposite kind, and that the quantity of electricity

induced on a closed conductor, which entirely surrounds the inducing

electricity, is equal in quantity, and opposite in sign, to the latter,

indicate that the induction of electricity through a dielectric re-

sembles the displacement of an incompressible fluid. [This fact,

probably, prolonged the use of the objectionable term '

electric fluid.']

We must therefore look upon a conductor as a body which cannot

sustain electrostatic stress, and so permits electricity to flow along
it when such stress is applied ;

and we are to regard an insulator as

a body which can sustain electrostatic stress, in which '

displace-

ment '

of electricity takes place in proportion to the stress which is

applied, and in which the displacement is annulled when the stress

is removed. In this way of looking at the matter, a surface charge
is supposed to reside on the surface of the dielectric and not on the

surface of a conductor.

The word '

displacement
' was introduced by Maxwell from the

analogy to an elastic medium the parts of which suffer displacement
when stress is applied, and recover from the distortion when the

stress is removed. But Maxwell was very careful to avoid attaching

any exact meaning to the term '

electric displacement.' He merely
used it by analogy ; and this cannot be too carefully kept in view.

Faraday used the term Electric Induction to indicate the state of

the medium in virtue of which equal and opposite quantities of

electricity appear on opposed surfaces ; and Maxwell spoke of the

total amount of induction through a given surface as the amount of

electricity which is
'

displaced
'

through it. A forward displacement
in an insulator corresponds to a direct current in a conductor ; a

diminution of displacement corresponds to a reverse current.

The difference between the specific inductive capacities of various

substances is explained by a difference in the amount of displace-

ment which is produced in each under the same electromotive

force.

We may draw lines of force through all points of any small closed

curve on a conductor so as to form a tube of force ; and we may
draw such tubes, covering the whole surface of the conductor, in

such a way that the number emanating per unit of area from all

parts of the surface is equal to 4 when <j is the density of the

electrification. The number of such tubes, which intersect unit

area of any equipotential surface, therefore expresses the intensity

of the force at that part of the equipotential surface.

But, instead of proceeding in the above manner, we may draw

the tubes so that each encloses unit amount of electrification on the
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conductor. Faraday called such tubes Tubes of Induction ; for,

when they originate, they enclose unit quantity of positive electricity,

and, when they end, they enclose unit quantity of negative electricity.

The total number of tubes of induction originating from, or ending

on, a conductor, expresses its total positive, or negative, electrifica-

tion, and the '

induction,' or '

displacement,' through each section of

such a tube is constant.

Properly speaking, tubes of induction are formed by lines of

induction, and not by lines of force. And it is well to remember

that tubes of induction are not necessarily tubes of force : for the

displacement does not always take place in the direction of the

electromotive force, although in general it does. (Compare the

elastic properties of non-isotropic solids, 245.)

320. Electric Energy. In order to estimate the amount of

energy which is associated with the charge of a conductor at a given

potential, we have merely to calculate the work expended in charg-

ing it. Let Q be the charge, and let V be the potential. Let us

suppose that the conductor is charged by successive infinitesimal

instalments dq, and that the charge at any instant is q, while' the

capacity of the conductor is C. The potential at the given instant

is therefore q/C. But the potential is the work which is required in

order to bring up unit charge from an infinite distance, and give it

to the conductor. Hence the amount of work which is necessary in

order to increase the charge q by the amount dq is

dq_

C

and the total amount of work which musi be expended in raising

the charge from to Q is

C /J Q2

i~c~~~
a

c"~~

Hence the whole energy is one half of the product of the charge
into the potential ;

or one half of the product of the capacity into

the square of the potential ; or one half of the quotient of the square
of the charge by the capacity.

Now let us look at the problem from the point of view of induc-

tion. Consider a positively electrified body inside a closed con-

ductor. Draw unit tubes of induction from the body to the internal

surface of the conductor, and describe equipotential surfaces corre-

sponding to all potentials which differ from each other by unity,
and are included between the potential V of the electrified body and
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the potential V of the surrounding conductor. The number of cells

into which the tubes of induction and the equipotential surfaces

divide the volume between the two charged surfaces is equal to the

product of V V into the number of tubes, i.e., into the charge of

the body. Hence the number of cells into which the space is

divided is double of the electrical energy of the system.

A simple extension of this reasoning shows that the same result

is true whatever be the number of electrified bodies contained inside

the conductor. (See Maxwell's Elementary Treatise on Electricity,

Chap. V.)

This result points to the conclusion that the energy of a system of

charged conductors is contained, not in the conductors themselves,

but in the insulating medium which surrounds them. And Fara-

day's and Maxwell's views of the nature of induction show us how
this may be. The dielectric is in a state of strain so long as dis-

placement is maintained by the action of electromotive force ;
so

that the energy which was expended in producing the strain is con-

tained in the dielectric in a potential form. [Visible strain may be

produced in a piece of glass by means of electrostatic stress.]

To obtain an expression for the amount of energy contained, per

unit of volume, in the dielectric, let us consider, as the simplest

case, an insulated sphere of variable radius r charged with a con-

stant quantity q of positive electricity. The potential of the sphere

is qjr, and the energy contained in the space external to it is

Now let r increase infinitesimally to r-\-dr. The energy becomes

2?

The difference of these quantities,

is the energy which is contained in the intervening shell of volume

47rr-dr. Hence the energy contained per unit of volume at the dis-

tance r is

E-ilSj.lp.
STT r4

STT

where F is the resultant force at the distance r due to the charge q.
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If K be the specific inductive capacity of the medium we must

write

E = F.
STT

This result is quite general, F being the resultant force at any point

due to the total electrification.

Maxwell has investigated the nature of the stress in the dielectric

which would account for observed electric phenomena. He finds

that the stress consists of a tension KF2

/47r along the lines of force

coupled with an equal pressure in all directions at right angles to

the lines of force.

In particular, the tension at the charged surface of a conductor is

47rK<r2 in a direction perpendicular to the surface, where a is the

surface density of the electrification.

As an instructive example in connection with the above expres-
sion for the energy of an electrified system, we may estimate the

energy of a charge Q, first when it is contained in a jar of capacity

C, and, second, when it is divided between that jar and another jar
of capacity C'. The original energy is

After division, since the potentials of the two jars are equal, we
have

=
C C''

where Q 3
and Q.2 are the charges in the jars of capacities C and C

respectively. Also

Qi+Q2=Q,

and hence QlS=Q_5_, Q^Q^SL.
And the respective energies are

Therefore, the total energy is

which is always less than the original energy. The fraction

C'/(C+C
f

) of the whole energy has been dissipated in the process
26

*-Q2n j^nr'
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of division usually taking the form of sound, light, and heat. [Com -

pare the dissipation of energy, which takes place when a gas is

allowed to expand without doing work, as in Joule's experiment

( 303), or that which occurs when heat diffuses, so as to arrive at

a lower temperature without the performance of work. In the

present case no electricity is lost, but the potential is lowered.]

321. Electric Absorption. Disruptive Discharge. If an elastic

medium be distorted beyond its limits of perfect elasticity, the

removal of the stress is not followed by complete recovery from

strain
;
but if the distortion be not too great, complete recovery

may take place after a sufficient time has elapsed. Conversely, a

long-continued force may produce large distortion.

Analogous phenomena appear in dielectric media when subjected

to electrostatic stress.

Thus, a Leyden jar, when charged to a certain potential, will

gradually fall in potential, though it is well insulated. The result

is the same as if its capacity gradually increased, or as if the specific

inductive capacity gradually increased so that the same displace-

ment was maintained by a smaller difference of potential. If the

jar be now discharged, the quantity of electricity which is obtained

is smaller than the original charge. This phenomenon is known as

Electric Absorption, for the jar appears to have absorbed some of

its charge.
A second (small) discharge may be obtained from the jar if it

be left for some time. Subsequently a third may be obtained, and

so on until the total discharge equals the original charge. These

are called Eesidual Discharges. The apparently absorbed charge
seems to leak out again, as if the medium gradually recovered

from a temporary distortion.

It is not well to pursue these analogies too far. Maxwell has

shown that apparent absorption will take place if the, insulating

medium is heterogeneous in the sense that it consists of parts, the

specific inductive capacities of which differ from one another, or of

parts which differ from each other in their insulating power.
The insulating power of ordinary dielectrics, such as glass, gutta

percha, etc., is not perfect ; and so, if a composite dielectric con-

sisted of alternate layers of incompletely and completely insulating

materials, electric absorption would be manifested.

We know also that elastic solids are only capable of withstanding
strain to a limited extent, and that they will be ruptured if too

great stress be applied. Similarly all dielectrics will cease to insu-

late electricity if they are subjected to too great electrostatic stress.

The state of strain in the insulating material of a Leyden jar
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becomes greater and greater as the potential of the jar is raised

higher ; but, if the process be continued too far, the insulation

breaks down, and the separated electricities recombine through the

ruptured dielectric. This phenomenon is called the Disruptive

Discharge.
A Leyden jar, through the substance of which the disruptive dis-

charge has occurred, is useless for all subsequent electrical purposes,

for the glass is in part shattered by the discharge. On the other

hand, if air or any other fluid were used as the dielectric, the jar

would insulate as completely as ever it did so long as too great

stress were not again applied ; for, although by the energy of the

discharge the parts of the fluid medium would be violently dis-

rupted, the insulation would be restored by an inflow of the sur-

rounding medium.
The disruptive discharge is usually accompanied by the produc-

tion of sound, light, heat, and mechanical effect, the total energy
evolved being the exact equivalent of the original electrical energy.

Various forms of the disruptive discharge exist. The most

ordinary form is called the spark discharge. When two oppositely

charged surfaces are brought sufficiently near each other, the electro-

static stress in the medium increases to such an extent that the

electricities combine because of rupture of the dielectric between

the charged surfaces. A small streak of light is apparent where

the discharge occurs, its form depending upon the thickness of the

dielectric through which the discharge occurs. When the distance

is great the streak of light (the spark) is very irregular and jagged
in outline.

Feddersen found that the nature of the spark discharge depends

upon the resistance ( 335) of the circuit in which the discharge
occurs. When the resistance is sufficiently large, it consists of

successive rapid discharges in the same direction. It becomes

continuous when the resistance is lessened to a certain extent, and

it consists of a rapidly alternating series of discharges in opposite

directions, when the resistance is still further diminished.

Sometimes the discharge is in the form of a brush. This is seen

chiefly when one of the two conductors has great curvature at the

place where the discharge occurs. A short line of light, which

abruptly branches out into a brush-like form, appears at the place.

Wheatstone showed, by means of his revolving mirror, that the brush

discharge consists of a series of rapidly succeeding separate dis-

charges. Its intermittent character gives rise to the crackling, or

even musical, sound which accompanies this form of the dis-

charge.
262
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The glow discharge takes place from the rounded extremity of a

wire which projects into the air. The end of the wire is covered by
a phosphorescent light. This form of the discharge does not appear
to be intermittent. It seems rather to be, as Faraday concluded, a

convective discharge, in which the charge is carried away by the

particles of the air. (Compare the action of the pith-ball, 307.)

The '

electric wind,' which blows from a sharp electrified point, is

due to the repulsion of air particles which have been electrified by
contact with the point.

The limiting tension ( 320) which the insulating medium can

sustain without rupture is called the Dielectric Strength of the

medium. The dielectric strength of air depends upon the distance

between the oppositely electrified surfaces. It has a greater value

when the distance is small than it has when the distance is large.

In all gases it increases as the pressure increases, and diminishes as

the pressure diminishes but not indefinitely. A minimum value

is reached at a certain stage, beyond which the strength increases

as the pressure is farther diminished.

The method of spark discharge under diminished pressure (in

so-called vacuum tubes) is much used for the purpose of examina-

tion of the spectra of gases.

322. Atmospheric Electricity, etc. The atmosphere is almost

always in a state of electrification, either positive or negative. The
electrification is generally positive during long-continued fine

weather ;
it generally becomes negative when the fine weather breaks.

In order to test the nature of the electrification, use may be made of

Thomson's water-dropping accumulator. This instrument consists

of an insulated metallic vessel, which contains water, and which is

fitted with a long fine nozzle, from which the water issues drop by

drop when the stopcock with which it is fitted is opened. The
nozzle projects out into the external atmosphere by an opening in

the window, and the vessel is connected with an electrometer. The

stopcock is then opened and the water drops out.

If the atmosphere be positively electrified, negative electricity

will be induced in the nozzle and, therefore, in the drop, while

positive electricity is repelled to the electrometer. As each drop
falls away, carrying its negative charge with it, the vessel and

electrometer are left more and more positively charged. The electri-

fication of the atmosphere is, therefore, indicated by the development
of a charge of like sign in the electrometer.

An interesting question arises in this connection What is the

source of the energy of the charge in the electrometer? The

energy of the charge may be transformed into heat, and the energy
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of the falling drops may also be transformed into heat. Further,

there is no other possible source of heat in the arrangement. But

the drops may fall without any production of electric charge, and,

therefore, the principle of conservation compels us to assert that

the drops will fall more slowly when they are electrified than they
do when unelectrified, and so will do less work. This conclusion is

verified by experiment.
If we replace the metallic vessel (above alluded to) by a hot

crucible, into which we drop water, the water will evaporate, and
the vapour will be found to be negatively electrified, for the crucible

and the electrometer become positively charged. If the vapour
condenses, the total volume of all the drops of water which are

formed remains constant; but the total surface of the drops
diminishes as each drop increases in size, and the same quantity of

electricity is confined to a smaller surface. The result is that the

potential of the drops rises considerably. It is possible that the

high potential of thunder-clouds may be explained in this way.
When the potential rises to such an extent that the air is unable

to withstand the electrostatic stress, disruptive discharge (lightning)
takes place.

The great use of a lightning-rod is to prevent the potential from

rising to such an extent that disruptive discharge will occur. It

does this by drawing off from the surrounding air a continuous

current of electricity. The electrified air induces the opposite
electrification in the rod, and the density is very great at the sharp

point so great, that the electricity streams off from it to the air by
silent discharge, and so annuls, totally or partially, the electrifica-

tion of the air ; and this is equivalent to the passage of the opposite

electricity from the air to the ground through the rod. If a cloud

in the neighbourhood of the rod were suddenly electrified to a high
potential by disruptive discharge from a distant thunder-cloud, the

rod may not be able to draw off the electricity with a sufficient

rapidity to prevent discharge from the near cloud to the building

supposed to be protected by the rod. The rod would, more likely
than not, be insufficient for the purpose of carrying off the discharge
to the ground.

323. Pyroelectricity. If a crystal of tourmaline, or of some other

minerals, be heated, electrical phenomena will be manifested,

although previously the crystal appeared to be unelectrified. Posi-

tive electricity appears at one end of the crystallographic axis,

negative electricity appears at the other.

The electrification may now be destroyed by passing the crystal

through a flame. Further electrification will then be manifested,
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similar to that which formerly appeared, if the heating be pro-

ceeded with ; but if, on the contrary, the crystal be allowed to cool,

.the opposite electrifications will appear at the ends.

Sir W. Thomson supposes that such crystals possess internal

electrification that they are electrically polarised in the direction

of the axis and that, when they are passed through the flame,

their surfaces become electrified in such a way as to annul at all

external points the effect of the internal electrification. And he

further supposes that the amount of internal electrification depends

upon the temperature, so that heating or cooling disturbs the

balance of external effects.

324. Electrification by Contact. The electrification of glass or

of sealing-wax, etc., by friction may be explained by the assumption
that an electromotive force exists at the surface of contact of the

two substances which tends to produce electric displacement across

the interface, and that friction is used merely for the purpose of

securing better contact.

The substances being non-conductors, the electricity cannot pass
from the surface, and the displacement continues until the effect

of the reverse force which it entails balances the effect of the

electromotive force of contact. So long as the surfaces remain

in contact, the arrangement acts as a condenser of extremely large

capacity, and relatively large displacement may be produced by a

comparatively feeble difference of potential. But whenever the

surfaces are separated, the potential rises greatly, because of the

ensuing decrease of capacity. In this way the high potential obtain-

able from frictional machines, or from the electrophorus, etc., is

explained. The charge is. the same after separation as before it, but

the potential has increased, and therefore the energy has increased ;

and the increase of energy is the precise equivalent of the work done

in the process of separation.

Now, although we cannot electrify conductors by friction in the

,way that we electrify non-conductors, we can produce electrification

of conductors by contact or friction, provided that we take proper

precautions.
If we take two flat pieces of zinc and copper, insulate them both,

and then place their flat faces in contact, the copper will become

negatively electrified, while the zinc becomes positively electrified.

This may be proved by separating the plates (still insulated) and

testing their electrification by means of the electroscope or the

electrometer. And we may explain the result by stating that an

electromotive force of contact acts at the surface of separation of

the metals in the direction from copper to zinc.
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Volta found that this assumed electromotive force of contact

between any pair of metals is equal to the sum of the electromotive

forces between every pair of metals forming a series closed by the

given pair. From this it would follow that the sum of the contact

forces in any complete heterogeneous metallic circuit is zero. This

is known to be true so long as the temperature is uniform through-
out the circuit ; and it is in accordance with the principle of conser-

vation of energy, for there is no source of energy in such a circuit.

The assumption of the existence of an electromotive force of

contact between metals sufficiently great to account for the

observed effects is regarded as inadmissible by many physicists.

That a contact force does exist is shown by thermoelectric pheno-
mena ; but this force is very much smaller than the Volta contact

force. Consequently, those physicists who are unwilling to admit

the possibility of a true contact force between metals, which would

account for the whole observed effect, look upon the surfaces of

separation between the metals and the air as the real seat of the

electromotive force. The whole question is still involved in much

uncertainty.
Contact forces exist between metals and liquids, and also between

different liquids. Volta's law does not hold universally in the latter

case.

325. The Electrometer. Instruments such as the gold-leaf elec-

troscope may be used for the purpose of obtaining very rough
measurements of electromotive force. The electrometer, in one or

other of its various forms, is used when accurate measurements of

electrostatic effects are required. It is used directly for the deter-

mination of difference of potential and it may be indirectly used

for the purpose of the comparison of the capacities of conductors,

and consequently for the determination of their charges.

Instruments such as the gold-leaf electroscope are termed idiostatic

instruments, for there is no electrification in any part of these instru-

ments except such as is due to the electrification which is to be tested ;

and their indications (when small) are therefore proportional to the

square of the difference of potential which is to be observed. Any
small variation of potential is therefore inappreciable when the

potential itself is small, and the indications of the instrument are

the same kind, whether the potential is positive or negative. In

heterostatic instruments, some of which we shall now describe, a

constant charge of one definite kind is maintained in one part of the

apparatus, so that a small variation of potential produces the same

effect, whether the potential is large or small, and the indication is

reversed in direction when the potential changes sign.



408 A MANUAL OF PHYSICS.

Most forms of the electrometer depend for their action upon the

electrostatic force between similarly or oppositely charged bodies.

Coulomb's torsion balance is therefore one (but a very imperfect)
form of electrometer.

In the attracted disc electrometer the two charged bodies are in

the form of parallel horizontal discs placed at a distance apart
which is small in comparison with their transverse dimensions.

We shall assume that the discs are oppositely charged, the densities

of the electrifications being -f <r and o- respectively. Except in the

near neighbourhood of the edges, the lines of force are perpendicular
to the discs, and the force at any point between them is

( 99)

27nr--27r( <7)=47nr in the direction from the positively charged disc

to the negatively charged disc. Since %-n-a is the force with which
the positively charged disc acts upon unit quantity of negative
electrification on the other disc, the total force with which it attracts

that disc is 27r<r.ou= 27r0-2<x, where a is the area of the disc. But,
as above, the force at any point between the discs is 47r<r, and is

equal to (V-V')/, where V and V are respectively the potentials
of the positively and the negatively charged discs, and t is the

interval between them. Hence a= (V- V')/47r, and the total force

of attraction between the discs is

1 (V-V) 2

=&^*>
which gives V -V= t A/ F

.

V a

[We might have deduced this result from the expression for the

energy contained in unit volume of the dielectric
( 320), which is

STT 8?r t
2

Hence the total energy contained in the volume at between the

discs is

1 (V-V) 2

-
, Ct*

STT t

And the rate at which this varies per unit of thickness gives the

force

In Thomson's absolute electrometer, in which this principle is used,

a concentric circular portion of the upper disc is alone moveable, and

so the difficulty of the non-uniformity of the force at the edge of the
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discs is avoided. The moveable part as nearly as possible fills the

aperture without touching its sides, and it is suspended by means of

a delicate (spring) balance, which has a fiducial mark by means of

which the lower face of the movable disc can always be placed in

one plane with the lower face of the surrounding portion of the

upper disc called the guard-ring. The lower disc can be accurately

moved, perpendicular to its own plane, through known distances,

by means of a screw. The balance and disc are surrounded by a

metal case for the purpose of preventing any disturbance which

might arise from external electrification. When the two discs are

connected to bodies of different potential, the balance is depressed,

and the screw is turned until it returns to its standard position. In

this way the distance t is determined. Also, by previous experi-

ments, it is known what weight must be placed on the disc in order

to bring it to its standard position, and this gives the (constant)

value of F.

In using the instrument it is preferable to keep its lower disc at a

constant potential by means of a charged condenser the constancy

being determined by means of a secondary electrometer. The value

of t is then found, first, when the upper disc is connected to the

ground, and again, when it is connected to the body whose potential
is to be determined. If 9 be the difference of the distances, the

above equation gives us the value of the potential

-

/87TF-v -^-'

a being now the area of the attracted disc.

In Thomson's quadrant electrometer an aluminium needle swings
inside a hollow metal cylinder, which is divided into four quadrants.

FIG. 175.

The two opposite pairs of quadrants (Fig. 175) are connected by
wires. The needle in its normal position is suspended with
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length directed along one of the lines of division between the

quadrants, and it is charged to a high positive potential. One pair

of quadrants, say those connected to the wire a, may be connected

to the ground, while the other pair is connected by the wire 6 to a

body at positive potential V. The quadrants connected with b

become positively charged, and the quadrants connected with a
become negatively charged. The needle is therefore deflected

towards the negatively charged quadrants, and the deflecting couple
is proportional to V, if the potential of the needle be sufficiently high.

Modifications of this instrument may be used for the measure-

ment of extremely small, and of extremely large, differences of

potential.

326. Electric Machines. The electrophorus, which is the

simplest form of electrical machine, has been already described.

As an example of the older machines, used for the continuous

production of electricity, we shall take the cylinder machine. This

machine consists of a glass cylinder C (Fig. 176), which is turned

FIG. 176.

round in the direction AmB. An insulated leather rubber A, coated

with zinc amalgam, presses against the rotating cylinder, and causes

the development of positive electricity on the glass, while it becomes

itself negatively electrified. The positive electricity is carried round

on the surface of the glass until it reaches the sharp metal points p,
which project from the insulated metallic conductor B. It induces

in the points negative electricity which is discharged on the surface

of the glass, destroying its electrification, and leaving B positively

electrified. A silk flap m, connected to the rubber and resting in

contact with the upper portion of the cylinder, prevents the electri-

fication from slipping back along the surface of the glass. The

potential of the positive electricity rises rapidly as it is carried

from A to B, and the resulting electromotive force may cause the
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electricity to slip back, so that the potential of B cannot rise very

high. The silk flap becomes negatively electrified and so prevents

the slipping, or stops it if it does occur by using the slipping elec-

tricity to destroy its own negative electrification, which tends to

equalise the potential.

In the plate machine the glass cylinder is replaced by a circular

glass plate, which is rubbed on both sides.

The Holtz machine is one of the best modern forms of electric

machines. A fixed glass disc D (Fig. 177) has two paper armatures

(a, a'} fixed on it near the opposite extremities of a diameter. Near

each armature an opening (shown by dotted lines) is cut in the

glass, through which a paper point attached to the armature pro-

jects so as nearly to come in contact with a revolving glass disc C,

JL

FIG. 177.

which is mounted upon an axis passing through the centre of D.

A metal conductor ra, fitted with a row of sharp points, faces the

revolving disc on the other side opposite the armature a. A similar

conductor n faces the armature a', and can be placed in communi-

cation with m by means of the rod Z, which slides through the

knob m.
In order to work the machine, the knobs n and m are placed in

connection, and a charge (positive, say) is given to the armature a

by means of the electrophorus or otherwise, while the disc is rotated

in the direction aCa'. After a short time a rustling sound is heard,

and the machine becomes difficult to drive. It is producing elec-
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tricity, and the extra work which has to be performed is the equiva-
lent of the electrical energy which is developed.
We may explain the process of charging in the following manner :

The positive charge given to a induces negative electrification in the

points of the conductor m. This is discharged upon the glass sur-

face, and the glass carries it round to the opposite side of the

machine, leaving m positively charged. Here it induces positive

electricity in the sharp point of the armature a', and this is dis-

charged upon the inside of the glass disc, leaving a' negatively

charged. The armature a' now draws positive electricity to the

points of the conductor n. This electricity is discharged upon the

outer surface of the disc, leaving the conductor n negatively charged.
Thus we may regard the glass disc as constantly carrying positive

electricity from n to m in the one half of its revolution, and as

constantly carrying negative electricity from m to n in the other

half of its revolution.

It is possible that the negative charge is given to a' by way of the

conductor n. The positive electricity, which is produced in m by
the first motion of the machine, and flows to n, may be supposed to

act inductively on the armature a', drawing negative electricity to

the body of it, and repelling positive electricity to the sharp point
to be discharged upon the glass, leaving a' negatively charged.
When the conductors n and m are slightly separated, a brush

discharge passes through the air space. This brush discharge may
bo changed into a violent spark discharge by connecting the inner

coatings of two Leyden jars to the conductors n and m, the outer

coatings of the jars being joined together. The jars have to be

charged up to the potential required for discharge through the air

space, and, as their capacities are large, a great quantity of elec-

tricity passes at each discharge.
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THERMO-ELECTRICITY.

327. Thermo-electric Phenomena. Though the principle of con-

servation of energy shows ( 324) that the sum of the electromotive

force in a closed metallic circuit must be zero, provided that there

be no difference of temperature between the various parts of the

circuit, we cannot assert that their sum will be zero if the tempera-

ture be not uniform. For, in the process of equalisation of tempera-

ture, it is possible that there may be transformation of thermal

energy into electric energy ;
and this transformation will occur if

the electromotive forces of contact between the metals which form

the circuit depend upon the temperature.

Now, Seebeck discovered in 1822 that, in general, a current of

electricity flows around a circuit, which is composed of two different

metals, if there be a difference of temperature between the two

junctions of the metals ; and this shows that the equilibrium of the

contact forces has been destroyed because of the variation of tem-

perature.

And we cannot assert, without experimental evidence, that there

will be no resultant electromotive force in a closed circuit composed
of a single metal which varies in temperature from point to

point. But the experiments of Magnus showed that no such force

exists.

Still, in order that Magnus's result should hold, it is necessary
that every part of the circuit should be physically similar and not

merely chemically similar. For example, two portions of the same

metallic substance, which are in a different state of strain, are

physically different substances, and are also thermo-electrically
distinct. And two portions of the same substance which are at

finitely different temperatures are in different physical states, and

might, therefore, exhibit thermo-electric phenomena. Such phe-

nomena were observed by Le Roux and others at the instant when
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contact was made between two portions of the same metal which

differed abruptly in temperature.
328. Laws of Thermo-electric Circuits. It is found by experi-

ment that the introduction of a piece of metal into a thermo-

electric circuit does not contribute to the electromotive force of
that circuit, provided that the extremities of the metal are at one

and the same temperature. We 'may, therefore, use solder to

connect together the various parts of the circuit.

Let the lines A (Fig. 178) represent two pieces of the same

metal. Let two of their ends have a common temperature 1} while

the other two have a common temperature ta ;
and let the ends

which are at the temperature ^ be joined by a metal C, while the

ends which are at the temperature ta are joined by a metal B. As

the whole arrangement is symmetrical with respect to the pieces A,

FIG. 178.

it is obvious that there can be no resultant electromotive force in

the circuit. And if the temperature of one of the junctions between

C and A be changed from ^ to t.2 ,
the metal B will still, from its

symmetrical position, contribute nothing to the electromotive force,

although there may now be a resultant electromotive force in the

circuit.

Next let us arrange pieces of two metals alternately, as in

Fig. 179, and let the temperatures of their extremities be as indi-

cated. The pieces B, which are at temperatures ^ and t.2 respect-

ively, contribute nothing to the total effect, so that the whole

arrangement really consists of two metals (A and B), the two

junctions of which are t3 and t respectively. Now we may join

the pieces ^B^ and 2B 2 respectively to those points of the piece

t.jBt01 which are at the temperatures t and t.
2 , by means of con-

nections made of the metal B ; and these new connections contribute

nothing to the total electromotive force in the circuit. But the

electromotive force in the part BB^A^B is due to the metals B and

A when the temperatures of the junctions are ^ and t . Similarly,

the force in the part BB^A&jB is due to A and B, with temperatures
t

:
and t.2 at the junctions ; and that in the part BB 2

A 3 is due to A
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and B with temperature t.2 and t.
A
at the junctions. Hence the elec-

tromotive force, due to temperatures t.
A and t

,
is equal to the alge-

braic sum of the electromotive forces due to temperatures t3 and

t
, t.2 and ti, 3 and t.2 , respectively.

fc B

FIG. 179.

This result is~quite general, and, therefore, the algebraic sum of
the various electromotive forces in a compound circuit, which is

composed'^of a number ofpieces of two metals ivith their junctions
at various temperatures, t and 1? t and &>, . . . . tn -\ and tm is equal
to the electromotive force in a tivofunctioned circuit of the same
metals with its junctions at the extreme temperatures t and tn .

We can thus obtain a comparatively large electromotive force by
means of a small' difference of temperature. This is the essential

principle of the Thermopile, an instrument which, in conjunction
with a galvanometer, is used for the measurement of small differ-

ences of temperature.

Lastly, arrange four metal wires, A, B, C, and B in the manner

FIG. 180.

indicated in Fig. 180, and let the one wire B be raised to tempera-
ture t while the other is kept at temperature t . The wires B
merely serve as junctions, and so the total electromotive force is due
to a circuit composed of A and C with the junctions at tempera-
tures h and t respectively. But we may join the two wires B by
third wire of the same metal without altering the distribution of

electromotive force in the circuit. And in the circuit BjA BB the
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electromotive force is due to A and B with junctions at temperatures

1 and t
; while in the circuit B^C^BB the electromotive force

is due to B and C, with junctions at the same temperatures.
If we define the thermo-electric power of a circuit of two metals

as the rate at which the electromotive force in that circuit varies

per unit of difference in temperature between the junctions, we see

that the result which we have just obtained shows that at every

temperature the thermo-electric power of A and C is the algebraic
sum of the thermo-electric powers of A. and B, and B and C.

329. Variation of the Electromotive Force with Temperature.
Soon after Seebeck's discovery Gumming observed that in certain

circuits (such as that of iron and copper), while one junction is main-

tained at a constant ordinary temperature and the other is gradually

raised in temperature, the electromotive force gradually increases

to a maximum, then diminishes, vanishes, and finally is reversed.

The law of variation of the electromotive force has been very fully

investigated by Gaugain and others. They found that, with most

pairs of metals, the curve which is obtained by plotting difference

of temperature along the (horizontal) axis of a?, and electromotive

force along the (vertical) axis of y (Fig. 181) is in general a parabola

with its axis vertical. Therefore, if we denote the electromotive

force by e, and the temperature by t and let E and T respectively

represent the electromotive force and the temperature which cor-

respond co the vertex of the parabola, we obtain

E-e = &(T-)2
(1)

where 6 is a constant ;
for this equation merely expresses the well-

known property of the parabola, that the square of the distance of
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any point on it from the axis is proportional to the distance of that

point from the tangent at the vertex.

In particular cases the curve is a straight line ; in others, it is

made up of portions of parabolas with parallel (vertical) axes, but

with their vertices alternately turned in opposite directions.

330. The Thermo-electric Diagram. Now another well-known

property of the parabola is that the rate of increase of the ordinate

at any point per unit of increase of the abscissa is proportional to

the value of the abscissa measured from the axis. The proof of this

is simple, for (1) gives

(2),

which is the direct expression of the above statement.

If, therefore, we plot the value of dejdt (which is the thermo-

electric power) against difference of temperature, we shall obtain,

instead of a parabola, a straight line. And we inay form a self-

consistent diagram of such lines for any number of metals by means

of observations on circuits consisting of each of these, in turn, with

some standard metal whose line is made to coincide with the axis of

temperature. (In the true diagram the lines might, of course, be

T T! T2
FIG. 182.

curves obtained from these straight lines by a process of shearing.)

We see, by (2), that these various lines will intersect the axis of

temperature at points which correspond to the temperatures of

the maximum ordinates in the original diagram (Fig. 181). And,

further, the point of intersection of any pair of lines in the diagram,
indicates the temperature, T, at which the electromotive force in a

circuit of the two corresponding metals attains a maximum value.

This diagram is called the thermo-electric diagram.
Sir W. Thomson first suggested the construction of such a diagram.

The actual construction of it, upon the assumption (suggested by
27
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theoretical considerations) that the curves which represent the thermo-

electric powers of the metals are, in general, straight lines, is due to

Tait. The diagram on page 422 is reduced from his results.

The area included between two temperature lines and the lines

which represent the thermo-electric position of any pair of metals

represents the electromotive force in a circuit of these metals when
the junctions are kept at the two given temperatures. This follows

(see 34) from the way in which the diagram of lines has been

deduced from the diagram of parabolas.

331. The Peltier Effect. A thermo-electric circuit forms a system
which is in stable equilibrium. For, if it were in unstable equi-

librium, increase of temperature of one of the junctions would

produce effects which would still further increase the temperature.
But we know that the application of heat to one junction produces
a current of electricity which flows in a certain direction across that

junction. Therefore by the principle of stable equilibrium ( 15),

we can assert that the passage of electricity in the given direction

will cool the junction.

The current at the hot junction always flows from the metal

which has the lower thermo-electric power to the metal which has

the higher thermo-electric power. Conversely, heat is absorbed at a

junction where a current flows in this direction, or is evolved at a

junction where the current flows in the reverse direction. Peltier

discovered this by direct experiments made without reference to any
theoretical considerations ;

and so the phenomenon of the absorption

or disengagement of heat at a junction across which electricity flows

is known as the Peltier Effect at that junction. The total Peltier

effect in any circuit vanishes when the two junctions are at the

same temperature, for the absorption of heat at one of the junctions

is equal to the disengagement of heat at the other.

S32. The Thomson Effect. In order to explain the fact that, in

auch circuits as iron-copper, the direction of the electromotive force

changes when the hot junction is sufficiently raised in temperature,
Thomson assumed that the Peltier effect vanishes at that tempera-
ture at which the electromotive force reaches its maximum value,

that is, at the temperature at which the lines of the metals intersect

in the thermo-electric diagram. The metals are then said to be

neutral to each other, and so this temperature is called the Neutral

Temperature.
Now no heat is being absorbed or developed at the junction which

is at the neutral temperature, and heat is being developed at the

cold junction, for there the current is flowing from the metal of

higher thermo-electric power to the metal of lower thermo-electric
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power. It would seem, therefore, that there is no source of thermal

energy in the circuit by the transformation of which we can account

for the development of electrical energy. But there is no other

possible source of the electrical energy, and hence Thomson was led

to predict that heat is absorbed at parts of the circuit other than the

junctions, either in that metal in which the current flows from hot

parts to cold parts, or in that metal in which it flows from cold parts

to hot parts, or in both metals. And he subsequently verified his

prediction by direct experiment.
In copper, heat is absorbed when the current, is passing from cold

parts to hot parts ;
in iron, it is absorbed when the current is passing

from hot parts to cold parts. [It is assumed here that we know the

direction in which a current is flowing. The convention by which
this is determined will be stated in next chapter.] Now, in a tube

through which a liquid is flowing, heat is absorbed by the liquid
when it passes from cold parts to hot parts. Hence, in copper and
similar metals, electricity acts as an ordinary fluid would do ; and so

Thomson speaks of the specific heat of electricity. It is positive in

copper and similar metals, and is negative (at ordinary temperatures,
at least) in iron and similar metals.

333. Further Discussion of the Thermo-electric Diagram. The
Peltier and the Thomson effects can be readily represented on the

thermo-electric diagram.
Let e

l represent the electromotive force in a certain circuit gom-
posed of some metal together with the standard one. T, being the

neutral temperature, we get, at temperatures t and t' respectively,
while the temperature t of the cold junction remains constant

whence

Similarly, if we use any other metal giving the electromotive force

e.2 with the standard metal under the same conditions

. . (4).

Hence the electromotive force in a circuit of the two given metals
under the same conditions as to temperature is

272
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Now (2) shows us that 26 X and 26
2
are the tangents of the angles at

which the lines of the metals meet the line of the standard metal in

the thermo-electric diagram. So, if we let t represent the absolute

zero of temperature, while all the other temperatures are given in

absolute units, we get

qt = 26^! and pt = 262T2

and so (Fig. 183) qp= 2(61
T1

- 6
2
T2). But qp = 2T(6X

- &2),

whence b^ - 62T2
= Tfa -62),

- -~, .... (5),and therefore tf-=2(61
-

which is the general expression for the electromotive force in a

circuit of two metals in terms of the inclinations of their lines to the

line of the standard metal, of their neutral temperature, and of the

temperatures of the junctions.

Now (5) may be put in the form

^=2(61 -62)(T-e')(^-^)+ (&i-&2)(^'-e)
2 .... (6)

The first term on the right-hand side of (6) vanishes when t'= t and

also when the temperature of the hot junction is at the neutral

point. It therefore represents the part of the electromotive force

which corresponds to the Peltier effect. Therefore, if there is no

other effect than the Peltier effect and the Thomson effect, the

second term must represent the part of the electromotive force which

corresponds to the Thomson effect.

If we suppose that unit quantity of electricity is transferred along

the circuit under the electromotive force <?, the quantity e represents



THERMO-ELECTRICITY. 421

the electric energy which is expended in the process, and therefore

the quantity on the right-hand side of the equation expresses, on the

one hand, the heat which is absorbed in the production of the electric

energy, or, on the other hand, the heat which is evolved when unit

quantity of electricity passes round the circuit under the electro-

motive force e. The first term of (6) is therefore taken as the

measure of the Peltier effect, while the second term is taken as the

measure of the Thomson effect.

If the current, flows round the circuit in the direction abcda, the

area abcda represents the whole heat which is absorbed in the

circuit during the passage of unit quantity of electricity.

But 2(61
- 62) (T t'}ab, and therefore the area abnma represents

the heat which is on the whole absorbed at the junctions. The
whole area abrsa represents the heat which is absorbed at the hot

junction, for at that junction the current is passing from the metal

of lower thermo-electric power to the metal of higher thermo-electric

power ;
while the area msrnm represents the heat which is evolved

at the cold junction, for at the cold junction the current passes from

the metal of high thermo-electric power to the metal of low thermo-

electric power.

Again, cn = e

2,b^(t' t), and therefore the triangular area cnb =
% . 2&!(' t] (f

-
t) represents the heat which is absorbed in the metal

of higher thermo-electric power. Similarly the area amd represents
the heat which is evolved in the metal of lower thermo-electric

power. [The former part has the positive sign prefixed to it in

(6) ; the latter part has the negative sign prefixed.]

It is evident that we may state quite generally that heat is

absorbed at any part of the circuit at which the current is passing
from parts of lower thermo-electric power to parts of higher thermo-

electric power, and is evolved at any part when the current is pass-

ing from parts of higher to parts of lower thermo-electric power.
The term (6 X

&2) (V
-

t) (V
-

t) may be regarded as the product of

the sum of the average specific heats of electricity in the various parts
of the circuit into the range of temperature, each term in the sum
being positive or negative according as it corresponds to absorption
or evolution of heat. Therefore the form of the various terms b^t',

bj, bst' t
and bs t, shows that the specific heat of electricity in any

metal is proportional to the absolute temperature, and consequently
the average which must be taken is the arithmetical mean

;
so that,

if a be the actual specific heat at temperature ,
the average value

throughout the range t will be |<r. Thus, when the electricity flows

from b to c (Fig. 183), we may suppose that it flows along bq t

and comes back along qc. In the first part of this process heat is
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absorbed ; in the second part heat is evolved. In the first part the

average specific heat is (say) ^M', where ^ is a constant. Similarly,

in the second part, the average specific heat is ^kit, which must be

regarded as a negative quantity, since heat is being evolved as the

electricity passes from cold parts to hot parts. The total sum for

the two metals is therefore ^(\ - k2] (V
-
t)=<r1

-
<ra ,

so that the whole

product (&!-&2) (t'-f) (t'-t) is identical with (<ri-r2) (*'-*) and

&! and &2 are double of &i and &2 respectively.

The specific heat of electricity in the metal whose line is jTi

(Fig. 183) is therefore represented by the line qr at the temperature
t'

t
and so on. It is negative or positive according as the line slopes

downwards (like that of iron, Fig. 184) or upwards (like that of

copper).

Le Eoux found that the specific heat of electricity in lead is zero

(or very nearly so), and therefore lead is chosen as the standard metal

in the construction of the diagram.
Tait has found the very curious result that the specific heat of

electricity in paramagnetic metals, such as iron and nickel, changes

sign at least twice as the temperature is raised (see 356).



CHAPTER XXIX.

ELECTRIC CURRENTS.

334. Convection Current between Charged Conductors. A pith-

ball placed between two oppositely charged insulated conductors,

and free to move between them, will gradually destroy their electri-

fication. When it comes in contact with the positively charged

body, it receives a positive charge with which it moves, under the

action of the electric force, towards the negatively charged body.
It gives its positive charge to this body, and receives from it a

negative charge, with which it again moves towards the positive

conductor, and so on alternately.

If the charges of the two conductors were originally equal, the

process will result in the complete destruction of their electrification.

If only one of the two is originally charged, the process will result

in the division of the charge between the two in the ratio of their

capacities.

Positive electricity is carried in one direction, and negative elec-

tricity is carried in the reverse direction, by a convective process.

The greater the electric force between the conductors is, the more

rapid will be the motion of the ball, and the more nearly will the

process approach to a continuous flow of electricity.

335. Flow of Electricity in Metallic Conductors. If we place

the two oppositely charged conductors in contact with each other by
means of a metallic wire, a current of electricity will be established

between them until their potentials are equalised. If one of the

bodies be electrified, say positively, while the other is unelectrified,

the result is (as above) that the charge is divided between the two

bodies in the ratio of their capacities ;
and it is usual to say that

positive electricity has flowed from the first body to the second,

though the same result might have been produced by a flow of in-

duced negative electricity in the opposite direction.

Any difference of potential between two parts of a conductor

constitutes an electromotive force under which transference of
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positive electricity will take place from the part at higher potential

to the part at lower potential. And so long as the potentials are

maintained constant, the quantity of electricity which flows from

the one part to the other in a fixed time remains constant. The

amount which flows per unit of time along the conductor from the

one part to the other, is called the Strength or Intensity of the

current.

The slightest difference of potential between two parts of a con-

ductor will produce a current of electricity between these parts, but

no current can be maintained without the expenditure of energy.

That is to say, the flow of the current is opposed by a Resistance in

the conductor. This is analogous to the flow of a liquid along a

tube. A current is produced in the tube by the action of the

slightest force, but work must be suspended in order to maintain

the flow
;
for the motion is opposed by a resistance which is due to

internal friction.

When an incompressible fluid flows through a tube because of a

constant difference of pressure at its extremities, equal quantities of

fluid pass every section of the tube in the same time. So in the

flow of electricity along a conductor because of a constant difference

of potential at its extremities equal quantities of electricity pass

every section of the conductor in the same time.

When by any means a difference of potential is maintained at

different parts of a conductor, we may draw in the conductor a

series of equipotential surfaces. The electric stream lines are

everywhere perpendicular to these surfaces.

Fig. 185 (a) represents the distribution of stream lines and equi-

potential lines in a thin circular conducting sheet, the centre of

which is kept at a constant negative potential, while a point on
its circumference is kept at an equal positive potential. The equi-

potential lines are in part open curves with their extremities on
the circumference of the circular sheet, and in part they are closed

curves surrounding the centre. If the whole diagram be revolved

about the axis of symmetry, the various lines will trace out surfaces

of flow and of constant potential in a conducting sphere, when the

given points are maintained at constant (different) potentials.
In the upper half of Fig. 185 (6) the method by which the stream

lines in the above case are drawn is exhibited. The circumference
of the circle is divided into a whole number of equal parts and lines

are drawn from A and C to the extremities of these parts. These
lines are numbered from A round the circumference to the opposite
end of the diameter AC.

The lower half of the figure exhibits the method of drawing the
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equipotential lines when A and C are points in an infinitely ex-

tended conducting sheet. The nature of the difference between

them and the equipotential lines of Fig. 185 (a) is apparent.

836. Ohm's Law. Kirclioff's Laivs. Ohm determined experi-

mentally the relation which connects electromotive force, current -

strength, and resistance in a conducting circuit. This relation is

therefore known as Ohm's Law.
He found that in a conductor of given resistance the strength of

the current is proportional to the electromotive force, and that in a

conductor of variable resistance the strength of the current is

inversely proportional to the magnitude of the resistance, if the

electromotive force be constant. If E, C, and E represent respec-

tively the electromotive force, the strength of the current, and the

resistance, these results are expressed by the equation

E=CE
if we define unit current as the current which is maintained in a

conductor of unit resistance by unit electromotive force.

This law enables us to calculate the resistance of a compound
conductor composed of a number of conductors arranged in '

series,'

that is, arranged so that the current flows from one to another of

the several conductors in succession. Let E denote the total differ-

ence of potential in the circuit, and let E be the total resistance.

Also, let Ci, 2 , etc., and rj,r2 , etc., ropresent the corresponding
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quantities for the several conductors in the circuit. The same current

C flows through all the conductors, and hence the condition

gives, by Ohm's Law,

Therefore the resistance of a number of conductors arranged in

series is the sum of their separate resistances.

If the conductors be arranged in '

multiple arc,' as in Fig. 186,

the condition

where Cj, C..,, etc., are the currents in the separate parts of the circuit,

gives, by Ohm's Law,

E_E E
B V V

whence = -
-|
---

j- . . . .

B r
a r2

The reciprocal of the resistance of a conductor is called its con-

ductivity^ and so this equation expresses the fact that the con-

ductivity of a compound conductor, formed of a number of

separate conductors joined in the multiple arc arrangement, is the

sum of the individual conductivities of these conductors.

The law alluded to above, that the flow of electricity in con-

ductors resembles that of an incompressible fluid, together with

Ohm's Law, enables us to express the relations connecting electro-

motive, current-strength, and resistance in the various parts of any
network of conductors, however complex. These laws, stated in the

forms,

(1) The sum of the currents which flow towards any point of

the network is equal to the sum of the currents which
flow from it,
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(2) The sum of the electromotive forces which act in any closed

loop of the network is equal to the sum of the products of

the current into the resistance in the several parts of the

loop,

are known as Kirchoffs Laws.

337. Electrolytic Conduction. Faraday's Laws. When elec-

tricity passes through certain conductors, chiefly liquids, decom-

position of the conductor takes place ;
and it appears that the

decomposition is a necessary accompaniment of the passage of the

electricity. Such substances are called electrolytes, and the process
of decomposition is termed electrolysis.

The current usually enters and leaves the electrolyte by metallic

conductors, which are termed the electrodes, the conductor by
which the current enters being distinguished as the anode, while

the conductor by which it leaves is called the cathode.

The products of decomposition appear at the electrodes, the

metallic constituent appearing at the cathode, while the other con-

stituent appears at the anode. Thus, in the electrolytic decomposi-
tion of hydrochloric acid, hydrogen appears at the cathode, while

chlorine is evolved at the anode. No decomposition occurs in the

interior of the electrolyte. Hence it follows that when an electro-

motive force acts upon the electrolyte, the metallic constituent

travels in the direction in which the current goes (that is, from

high to low potential), and the other constituent travels in the

opposite direction. The two constituents are therefore termed ions,

the one which moves towards the cathode being called the cation,

while the one which moves towards the anode is called the anion.

The laws of electrolytic conduction were fully investigated by

Faraday. He found that the amount of the electrolyte which is

decomposed by the passage of a certain quantity of electricity is

strictly proportional to that quantity. The amount which is de-

composed during the passage of a unit of electricity is called the

Electrochemical Equivalent of the substance.

Faraday also found that the amount of any substance, which

appears as anion or cation, is totally independent of the substance

with which it is combined ; and this shows that the electrochemical

equivalent of a substance is absolutely constant.

The process of electrolysis has received extensive practical appli-

cations in the art of electrometallurgy.

338. Polarisation. Ohm's Law in Electrolytes. The passage
of electricity through a liquid results in the chemical decomposition
of that liquid, and the electrical energy is transformed in part into

potential energy of chemical separation.
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Now, if two parts of a conductor are kept at constant (different)

potentials, the work which is done in transferring unit quantity of

electricity from the part at the higher potential to the part at the

lower potential is equal to the difference of potential between the

two parts that is, to the electromotive force (E, say). Let H be

the amount of heat which is developed in the combination of unit

amount of the ions, from the state in which they are liberated, so as

to form the compound electrolyte. This amount of heat is equivalent

to the amount of work JH, where J is the dynamical equivalent of

heat. Hence, in dynamical units, J#H is the work which is ex-

pended when unit amount of electricity passes through an electrolyte

of which q is the electrochemical equivalent, and, therefore,

The quantities, J, q, and H, in this equation are all finite, and so

E is finite ; and, therefore, a finite electromotive force is required,

in order to effect electrolytic decomposition.

If we keep the electrodes at an insufficient difference of potential,

no decomposition can ensue
;
but if there be any difference of

potential in the circuit, flow of electricity must occur. And we are

here met with a difficulty, for Faraday's Law asserts that decom-

position takes place in strict proportion to the amount of electricity

which passes. But this difficulty can readily be explained. The

phenomenon is precisely analogous to the charging of a Leyden jar.

k When the jar is charged under given conditions regarding potential,

positive electricity flows into the one coating and negative electricity

flows into the other until the potential of the jar is equal to that of

the machine which is used to charge it. But the electrical energy

is stored up in the dielectric which insulates the coatings of the jar,

and will produce an equal reverse current of electricity whenever

the coatings are put in metallic communication with each other,

and we say that this reverse current is produced by the reverse

electromotive force of the jar. Similarly, when an electromotive

force, too feeble to cause decomposition, acts upon an electrolyte,

flow of electricity takes place in the conducting parts of the circuit

that is, in the metallic and the electrolytic conductors. But no

transference of electricity can take place between the electrode and

the electrolyte, for decomposition must occur (by Faraday's law) if

it did, and the electromotive force is not large enough to produce

decomposition. The layer (of thickness comparable with molecular

dimensions) between the molecules of the electrolyte and the mole-

cules of the electrode acts as an insulator, and its two surfaces

become oppositely charged, as those of a Leyden jar would, until
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the reverse electromotive force produced in this way becomes

equal to the direct electromotive force. If now the direct force be

removed and the electrodes be joined so as to form a closed circuit,

the reverse force will produce a reverse current.

This phenomenon is called polarisation, the reverse force is

called the electromotive force of polarisation, and the reverse cur-

rent is called the polarisation current.

Let E be the force which is required to produce decomposition.
If E be the direct force, the difference E - E is alone effective in

producing a permanent current.

The quantity E is not constant except under fixed conditions ;

and, in practice, the conditions under which the decomposition
takes place vary greatly. The electrodes or the electrolyte may
have some chemical or molecular attraction for the products of

decomposition, and the electromotive force which is required to

produce the decomposition will be less in proportion as this attrac-

tion is greater. As an extreme case, an infinitely small electro-

motive force would effect the decomposition of an electrolyte, the

constituents of which had no greater attraction for each other than

they had for the substance of the electrode. Again, if the products
of electrolysis are gaseous, and are dissolved by the electrolyte, de-

composition will take place more readily than it would if the gases
were not dissolved. When the process is first started the gases may
dissolve readily, but their solution will occur with greater and greater

difficulty until saturation is reached, when it attains a maximum.

Further, if the gases evaporate from the electrolyte, saturation will

never be fully attained, and the maximum attainable state'of satura-

tion will depend upon the partial pressure of the gases in the atmo-

sphere which is in contact with the electrolyte.

These and other causes which affect the electromotive force have

been fully discussed by Von Helmholtz, who has given a complete

thermodynamical theory of polarisation, the results of which accord

very well with experimental facts.

If n be the number of atoms in the electrochemical equivalent of

a substance, the quantity qjn may be regarded as the 'atomic

charge,' which is constant since q and n are constant. This con-

stancy of the atomic charge points to an intimate relation between

electricity and matter, and the fact that the electrochemical equiva-
lent of a substance is constant whether it be electrolysed from

combination with a monad, dyad, or triad, etc., element shows that

the atomic charge of a dyad element is double that of a monad

element, that the atomic charge of a triad element is three times

that of a monad element, and so on. This led Von Helmholtz to



ELECTRIC CURRENTS. 431

regard chemical affinity as the result of a greater attraction of some

atoms than of others for positive or negative electricity. Thus, for

example, oxygen has a greater attraction for negative electricity

than hydrogen has, while hydrogen attracts positive eledhricity more

strongly than does oxygen. And Von Helmholtz regard's the affinity

of oxygen and hydrogen for each other as the result &t the electrical

attraction between positively charged hydrogen and negatively

charged oxygen.
The atomic charge is excessively small since n is very large ; but,

since the atoms are at an exceedingly small distance apart, the

attraction may be very great. .

These considerations enabled Helmholtz to explain a phenomenon
which appeared to be at variance with Faraday's law. An extremely
feeble constant current, inappreciable to all but the most delicate

instruments, flows in an electrolytic circuit under electromotive

forces far too feeble to produce decomposition. Von Helmholtz

showed that this was due to the presence of dissolved gases. Thus

oxygen in solution will gradually find its way to the negative
electrode and will receive a negative charge. It then becomes

subject to the electromotive forces and travels to the positive elec-

trode, to which it gives up its negative charge. In this way a

constant ' convective ' current of electricity is kept up, and Faraday's
law is not subject to exception.

Helmholtz observed the existence of this convective current

even when he had? carefully freed the electrolyte from dissolved

gases by the most perfect processes. Here again there is no real

exception to Faraday's law, for Helmholtz's thermodynamical
theory shows that some dissolved gases must be present if the

(liquid) electrolyte is to be in stable equilibrium ; and, therefore,

even if. all dissolved gases were abstracted, decomposition of the

liquid would go on until the requisite minimum of dissolved gases

products were present.

In the case of electrolytes, Ohm's law must be put into the form
E -E = CK, E being, as above, the electromotive force of polarisa-
tion. Its applicability has been verified, in all cases, within the

limits of experimental error. The variability of E renders the

proof of the law extremely difficult.

339. Production of Electric Currents. An electrolytic circuit

constitutes a system which is in stable equilibrium, for a finite

electromotive force is required in order that decomposition may take

place, and the removal of the electromotive force causes the cessation

of the decomposition. Consequently, we conclude
( 15) that, in

this stable system in which the passage of a divect current produces
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chemical separation, the energy of chemical separation will be

transformed into the energy of a reverse electric current, when the

conditions are such that this reverse current can flow.

Therefore, in a closed conducting circuit, which includes an

electrolyte, and which has associated with it energy of chemical

separation, the sum of the electromotive forces may not be zero, but

will produce an electric current, while chemical combination pro-

ceeds. The sum of the forces can differ from zero only because

there is a chemical source for the energy of the current which the

resultant force produces; just as, in a thermo-electric circuit, the

electric energy is derived from the heat energy which is sup-

plied.

An arrangement of this kind may therefore be used for the pro-

duction of an electric current ; and it is of no consequence whether

the chemical separation is produced by the previous passage of an

electric current through the circuit under the action of an external

electromotive force, or is given as an initial condition produced by
chemical processes or otherwise.

An arrangement of the latter class constitutes a Primary Cell ;

one of the former class constitutes a Secondary Cell.

The equation in 338 indicates a method of determining the

electromotive force in any such circuit ; for it asserts that ' the

electromotive force of an electrochemical apparatus is in absolute

measure equal to the mechanical equivalent of the chemical action

on one electrochemical equivalent of the substance.' This was first

pointed out by Sir W. Thomson. Conversely, the energy which is

developed in a given chemical action can be estimated by means of

measurements of the electromotive force of an electrochemical

apparatus in which that action is developed.

340. Primary Cells. Primary cells are sub-divided into two

classes according as one fluid or two fluids are used in their construc-

tion.

All the older cells were of the one-fluid type, and the conducting
circuit was generally made up of a plate of zinc, a plate of copper,

and sulphuric acid. The sulphuric acid, combining with the zinc,

produces zinc sulphate, and hydrogen is liberated at the copper

electrode. Positive electricity flows from the zinc to the copper

through the liquid (Fig. 187).

Such a cell has many disadvantages. Slight impurities in the

zinc (possibly even differences in its physical constitution) at

different parts give rise to local currents of electricity between these

parts, and thus lead to solution of the zinc without the production

of effective currents in the main circuit. This local action may be
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largely prevented by amalgamating the surface of the zinc, for the

surface is thus rendered more nearly homogeneous. Again, the

evolution of hydrogen at the copper electrode gives rise to a reverse

FIG. 187.

electromotive force of polarisation. And, ultimately, when the

sulphuric acid is transformed into zinc sulphate, zinc, instead of

hydrogen, is deposited upon the copper plate. When this process is

complete, both electrodes are practically composed of zinc ; and,

from the symmetry of the arrangement, it is evident that the sum of

the electromotive forces in the circuit must be zero, so that the

current ceases.

Daniell improved this cell by the introduction of two fluids,

separated by a porous diaphragm which did not prevent the passage
of electricity. A zinc rod Z (Fig. 188) is placed inside a porous cell,

FIG. 188.

which is contained in an outer copper vessel C. The porous cell

contains a solution of zinc sulphate, and the copper vessel contains

a saturated solution of copper sulphate. In order to keep this

28
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solution saturated, crystals of the sulphate of copper may be placed
on a perforated tray T, inside the copper vessel. These crystals are

dissolved away when the solution becomes weakened.

When the cell is in action, the current passes from zinc to copper

through the liquid. The zinc sulphate is electrolysed into zinc and

'sulphion' (S0 4 ).
The S04 acts upon the zinc and forms zinc

sulphate. Thus the zinc sulphate always tends to be saturated.

The copper sulphate is simultaneously electrolysed into copper and

sulphion, and the copjMr (being the metallic ion, and therefore

travelling with the current, which is assumed to travel in the

direction in which positive electricity goes) is deposited upon the

copper vessel. The zinc, which results from the electrolysis of the

zinc sulphate, is not deposited at all, but unites with the sulphion

produced by the electrolysis of the sulphate of copper, and so re-

forms zinc sulphate, which remains inside the porous cell. Thus

hydrogen is not evolved at the copper electrode, and polarisation is

reduced to a minimum.
If the current be too strong, or if the copper sulphate be not

saturated, some hydrogen will be evolved.

Daniell's cell gives an extremely constant electromotive force if

the conditions which are necessary to its proper action are main-

tained.

Bunseri's cell is also a two-fluid cell. A rod of carbon is placed
in strong nitric acid, which is contained in the porous cell, and a

zinc plate is placed in an outer cell of glazed earthenware which

contains an aqueous solution of sulphuric acid. Hydrogen is

evolved at tjie carbon, but is at once oxidised by the nitric acid.

The fumes which are given off from the acid are* very poisonous, so

that these cells should be kept in a separate room, as far as possible,

if a considerable number of them are in use.

Grove's cell resembles that of Bunsen in its chief features. The

carbon is replaced by a sheet of platinised silver. The process of

platinisation gives a large, very finely corrugated surface, which

favours the diminution of polarisation.

The electromotive forces of the two latter cells are very nearly

equal to each other, and are considerably larger than that of a

Daniell cell, but are not so constant.

The single-fluid bichromate cell (bichromate of potassium dis-

solved in an aqueous solution of sulphuric acid, into which dip zinc

and carbon plates) gives a high electromotive force, and is greatly

Used when a powerful current is required for short periods.

The Leclanche cell consists of a porous cell filled with manganese

dioxide, in which a carbon rod is placed. A zinc rod is placed in a
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solution of ammonium chloride, outside the porous cell. The
electromotive force of this cell rapidly diminishes when it is made
to produce a current ;

but it soon attains its original value after the

current is stopped. Its great advantage is that it remains in good

working order for months.

Many other forms of cells, including modifications of the above,

are in practical use
;
but the present examples will serve sufficiently

as illustrations of their general principles.

The zinc and the carbon, or the zinc and the copper, etc., are

called the elements of the cell ;
carbon and copper being positive

elements, while zinc is a negative element (for the current flows

from carbon or copper to zinc through the external conductor).
Various cells may be joined together to form a voltaic battery.

When the positive element of one cell is joined to the negative
element of the next, the cells are said to be coupled in series ; or to

be coupled for electromotive force, for, in this case, the electromotive

force of the battery is the sum of the electromotive forces of the

several cells. When all the positive elements are joined together,
and all the negative elements are joined together, the cells are said

to be coupled for quantity, for the whole battery acts as one large
cell of the same kind, and produces a powerful current.

341. Secondary Cells. Grove's Gas Battery was the earliest

form of secondary cell. It consists essentially of two glass tubes

(A, B, Fig. 189), which are fitted into the two necks of an ordinary
Woulfe's bottle. These tubes are open at their lower ends, but are

FIG. 189.

closed at their upper ends. Platinum wires are inserted through the

glass at the closed ends, and are welded to strips of platinum foil

which extend throughout nearly the whole length of the tubes.

The tubes and the bottle are filled with (say) dilute solution of

sulphuric acid.

282
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If a current be sent round the circuit from A to B through the

liquid, oxygen will be evolved in A and hydrogen will be evolved in

B ; and a reverse electromotive force will be produced. If the

direct current be stopped, and if the wires let into A and B ba

joined, this reverse force will produce a reverse current setting from

B to A through the liquid. The liquid will be decomposed, oxygen

tending to appear in B and hydrogen tending to appear in A. The

gases are not really set free ; they combine with the gases already
in the tubes to form water

;
and this process goes on until both

tubes are again filled with the liquid solution.

[It is interesting to note that the arrangement may be used as a

primary battery. Instead of evolving the gases by a direct current,

we may introduce them independently into the tubes, and the

current will proceed from B to A through the liquid as formerly.

The current will flow even if hydrogen be introduced into B while

A is left full of liquid. The hydrogen in B unites with the oxygen
which is produced by the electrolytic action of the current, and

hydrogen is evolved in A. The sum of the electromotive forces in

the circuit soon becomes zero, since there is hydrogen in both tubes,

and the current stops.

If A be filled with ordinary oxygen while B is left full of liquid,,

very little effect will be observed; and this shows that electro-

lytically evolved oxygen differs considerably in its properties from

ordinary oxygen. If A contains ozone, the action will proceed as

before.]

Planters secondary cell consists of two large sheets of lead,

separated by a sheet of guttapercha, and rolled up into a spiral

form. These sheets are placed in a vessel which contains dilute

sulphuric acid, and an electric current is passed through the cell

from one sheet of lead to the other. The oxygen which is evolved

at the one sheet forms a layer of peroxide of lead on its surface.

The direct current being stopped, and the terminals of the lead sheets

being joined, a reverse current flows through the cell. The hydrogen
which is now evolved partly reduces the peroxide of lead, and the

oxygen unites with the lead of the other electrode to form peroxide ;

and, when both electrodes become similar, the current stops. A
current is now passed, from an external source, through the cell in

the same direction as that in which the reverse current flowed.

When the gases bubble off freely at the electrodes, this current is

stopped, and 'the polarisation current is allowed to flow ;
and so on

alternately for a number of times. This process, which is said to

form the cell, gradually changes the lead into a spongy condition,

and thus greatly increases the charge which the cell can contain.
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When the process of formation is complete, the cell is always

charged by a current in one direction only.

Fame's cell is essentially similar to Planted, but the plates of

lead are at first covered with a coating of a lower oxide of lead.

"When the direct current is passed, the oxide on the one plate is

changed to the peroxide, while that on the other is reduced to the

metallic condition. This avoids the tedious process of forming the

cell by alternate currents in opposite directions.

The modern accumulator is constructed on essentially the same

principles as the Faure cell is constructed on, though various im-

provements are introduced. Its electromotive force exceeds that of

a Bunsen cell, while its resistance is extremely small, so that it is

capable of producing a very powerful current.

342. Transformations of Electric Energy in Conducting
Circuits. If the potential V of a conductor be kept constant while

its charge alters by the amount Q, the electric energy changes by
the amount VQ. Hence, if the quantity Q of electricity flows from

a part of a conductor where the potential is V to a part where the

potential is V, the energy expended in the production of this flow is

(V-V')Q that is, it is EQ, where E is the electromotive force

which acts between the given parts. Hence, if a current of intensity

C is maintained between these parts, the rate at which energy is ex-

pended in the process is EC.
This energy, which is associated with the current, will be trans-

formed into heat in the circuit, if no other transformations take

place. If a reverse electromotive force E acts in the circuit, work
is expended at the rate E C in making the current flow in a direc-

tion opposite to that in which the reverse force acts. And this

energy is transformed into heat at the place where the reverse force

acts. (The Peltier evolution of heat at a thermo-electric junction is

a case in point.)

If no part of the direct electromotive force acts against a reverse

force, and if R is the resistance of the circuit, Ohm's law gives
E = CB, whence we see that the rate at which heat is developed in

the circuit is, in electrical units,

EC2
.

that is to say, the rate at which heat is developed in a circuit is

directly proportional to the resistance of the circuit and to the

square of the intensity of the current which flows through it.

This is known as Joule's Law.
Part of this heat is produced in the cell which is used for the pro-

duction of the current, but by making the external resistance very
large in comparison with the internal resistance of the cell, this
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portion may be made as small a fraction of the total amount as we

please.

This principle is utilised in the process of electric lighting. The
carbon filament of an ' incandescent '

lamp is of relatively large re-

sistance. Almost all the heat into which the electric energy is

transformed is developed in the carbon, which becomes ' white-hot.'

In the ' arc
'

lamp the chief part of the resistance is in the air-gap

between the carbon poles, and the heat which is developed raises the

air to so high a temperature that it becomes intensely luminous.

[Air at ordinary temperatures is an insulator, but hot air admits of

the passage of electricity through it with comparative ease. The

heating of the air is effected by allowing the carbons to touch each

other, so that the current flows through them and makes them red-

hot near the point of contact. When this results, the carbons may
be separated to a slight extent, and the current will continue to flow.]

The energy of an electric current may be directly transformed

into mechanical work by means of an electro-motor ( 366).

343. Measurement of Electromotive Force, Current Strength
and Resistance. The electromotive force which acts between two

parts of a conductor may be determined directly by means of the

electrometer ( 325), for the problem is merety one of the determina-

tion of difference of potential.

The strength of the current which flows in a circuit may be found

directly by placing an electrolytic cell (or voltameter) in the circuit.

The quantuVy of electricity which passes through the cell per unit of

time is, by Faraday's law, directly proportional to the amount of

chemical decomposition which takes place per unit of time. [The

arrangement which was described as Grove's gas battery, in 341

constitutes a voltameter, and the amount of oxygen or of hydrogen
which is evolved per unit of time in either inverted tube can be

measured directly. If Q be this quantity, while q is the electro-

chemical equivalent of the substance, the strength of the current is Q/#.]

FIG. 190.

In practice the galvanometer is more frequently used for the

measurement of the strength of a current. It consists essentially
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(Fig. 190) of a coil of wire within which a magnet is freely sus-

pended. The magnet lies normally in the pmne of the coil, but

when a current flows round the coil, the magnet tends to place its

length at right angles to the plane of the coil. This tendency is

opposed by the action of -a constant external magnetic force, and the

tangent of the angle of deflection of the magnet is proportional

to the strength of the current ( 369).

The resistance of a wire may be determined in terms of any given

unit by means of the arrangement known as Wheatstone's Bridge.

Let four conductors, the resistances of which are rlt ra ,
r3 ,

and r4 , be

arranged as in Fig. 191, and let a battery b be placed between the

points A and B, so that currents flow (say) in the way which is

indicated by the arrows. The potential at the point C is inter-

mediate between those of A and B, since the current flows, through

C, from A to B. And, by Ohm's law, since the same current flows

along AC and CB, the potential at C must divide the difference of

potential between A and B in the ratio of TI to r2 . Similarly the

potential at D will divide that difference in the ratio of r
3 to r4 .

Hence, if C and D are at the same potential (which may be deter-

mined by the fact that no current will then flow through a galvano-
meter which is placed between C and D), the resistances must be

connected by the relation

And consequently, if we know the ratio ra/r4 ,
and also the absolute

value of r2 ,
we can calculate the value of r^

If we know the value of any two of the three quantities electro-

motive force, current-strength, and resistance we can calculate that

of the third by means of Ohm's law (E=CE). Or, if H be the heat

which is developed in a conductor by transformation of electric

energy, while J is the mechanical equivalent of heat, we can calcu-
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late the values of any two of the three quantities, when we know
that of the third, by means of Joule's law,

The resistance of a metallic conductor increases when its tempera-
ture is raised, but the resistance of an electrolytic conductor

diminishes when its temperature increases. The law of variation

being known, we can determine temperature by means of measure-

ments of resistance. This method is very useful when the tempera-
ture is high.

A discussion of the various units in terms of which electrical

quantities are measured will be given in Chap. XXXI.
The variation of resistance with temperature forms the basis of

the most delicate method for the measurement of radiant energy.

The bolometer which is used for this purpose consists essentially of

an extremely sensitive and well-balanced Wheatstone's Bridge.
This bridge is thrown off balance, and a current is produced through
the galvanometer when radiant heat falls on one of the resistances.



CHAPTEE XXX.

MAGNETISM.

344. Fundamental Phenomena. Certain bodies, when they are

suspended in such a way as to be able to turn in any direction, are

found to have a marked tendency to place a definite set of lines

drawn in their substance parallel to a definite direction in space.

Such bodies are said to be magnetised, and are called 'magnets.

This property of magnetisation is possessed notably by one of the

oxides of iron (lodestone), but it may be induced to a much greater

extent in pieces of steel or metallic iron. The metals cobalt and

nickel are also capable of becoming strongly magnetic. All other

substances have relatively extremely feeble magnetic properties.

Magnets are classified as permanent or temporary', according as

they do or do not retain, in large part at least, their state of mag-
netisation after the removal of the influence which caused it to be

manifested. A bar of steel is of the former kind, a bar of soft iron

is of the latter kind.

Any magnetic substance, when it is placed in the immediate

neighbourhood of a magnetised body (more generally in a field of

magnetic force, see 362), becomes magnetised and retains its

magnetisation so long as it remains in that position. Whether or

not it will retain its magnetisation after removal from the neigh-
bourhood of the magnetised body depends upon its physical consti-

tution and upon circumstances which will be considered afterwards.

And further, the substance in which magnetisation is thus induced

will (in general) be attracted by the magnetised body.
For the sake of definiteness, let us consider the action of an

ordinary
' bar '

magnet, i.e., a permanent magnet made of a

rectangular or cylindrical bar of steel. If all similar parts of this

bar are similarly magnetised (a condition which is not realisable in

practice), or if it be symmetrically magnetised with regard to its

axis of figure, it will, when freely suspended, place its axis of figure
in the definite direction in space above alluded to. One definite end
of the magnet will point, on the whole, northwards, the other will
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necessarily point southwards. [The magnet, if turned round

exactly end for end, may remain in the reverse position for a brief

time ; but it is essentially in unstable equilibrium, and will, if dis-

turbed to the slightest extent from rest, turn round into its normal

position.]

The suspended magnet will depart from this normal attitude if

we bring up another magnet into its neighbourhood. Those ends of

the two which naturally point northwards appear to repel each other.

Those which point southwards also exhibit mutual repulsion ; whilst

those which naturally point oppositely appear to attract each other.

345. 'North' and 'South' Magnetism. The phenomena which

we have just considered present obvious analogies to electrostatic

phenomena. Two electrostatic systems, each consisting of two

oppositely charged, insulated, rigidly-connected, conducting spheres,

placed near each other in a uniform field of electrostatic stress,

would exhibit similar mutual action, and would, when free from

each other's influence, take up a position in which the line joining

the centres of the insulated spheres coincided in direction with the

lines of electrostatic force in the surrounding medium. Hence, by

analogy, we may assume that there are two kinds of magnetism ;

that like kinds repel each other; that unlike kinds attract each

other ; and that the force of attraction or repulsion diminishes as

the distance between the attracting or repelling bodies increases.

It is usual to call the magnetism, which is found at that end of

a magnet which points northwards, north magnetism; while the

opposite kind is called south magnetism. But, since it is usual to

distinguish the ends of a magnet by colouring the north-pointing

end red and the south-pointing end blue, the terms red and blue

magnetism are sometimes used instead of these, though their use

cannot be commended.

Further, just as the action of an electrified body separates the

neutral electricities in an adjacent conductor, we might expect by

analogy that a magnetic substance would become magnetised so

long as it remained in the neighbourhood of a magnet ;
and that it

would be attracted towards the magnet just as the conductor would

be attracted to the electrified body. All these results happen, but it

is not well to push the analogy too far. Thus, while the conductor

ceases to exhibit electrification when it is removed from the influ-

ence of the electrified body, a magnetic body will not necessarily

(or even generally) cease to exhibit magnetisation when it is

removed from the influence of the magnet. And it must be

remembered that the phrase
' two kinds of magnetism

'

is merely

adopted as a matter of convenience. (Cf. 308.)
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346. Paramagnetic and Diamagnetic Bodies. Another point in

which the direct analogy between electrical and magnetic action

breaks down is in the repulsion of some bodies from a magnet.
Let us suppose that the magnet is so long that the magnetic body
which we are considering is subject only to the action of the mag-
netism at the near end of the magnet. Under this condition some
bodies are attracted to the magnet, while others are repelled from
it. Bodies of the former kind are called paramagnetic bodies

;

those of the latter kind are called diamagnetic bodies.

There is nothing in electricity corresponding to diamagnetism.
347. Magnetism a Molecular Phenomenon. The great distinc-

tion between electrical and magnetic phenomena lies in the absence

of anything of the nature of conduction of magnetism. While it

might seem that the disappearance of induced magnetisation, when
a piece of soft iron is withdrawn from the neighbourhood of a

magnet, is due to the flowing together of the two opposite kinds

of magnetism, the persistence of magnetisation to an appreciable
extent when the soft iron is replaced by hard steel at once disposes
of this view.

And, further, if we bring a magnetic substance into contact

with one end of a magnet and then withdraw it from contact, no

interchange of magnetism takes place, though an interchange of

electricity would occur if the substances were electrified conductors.

Also, while a conductor under the influence of an electrified body
may be divided into two oppositely charged portions, it is impossible
to divide a magnet into two oppositely magnetised portions that is

to say, it is impossible to isolate one kind of magnetism.

Every portion, however small it may be, into which a magnet
may be broken exhibits properties precisely similar to those which
were manifested by the complete magnet. We conclude, therefore,

that this would still hold if the magnet were reduced to its con-

stituent molecules ; that each molecule of a magnetised body is

itself a little magnet.
It is easy to explain, upon this assumption, how it is that mag-

netisation is only evident near the ends of a magnet. For, if the

FIG. 192.

little circles in Fig. 192 represent the magnetised molecules, we see

that the effect of any north end of a molecule at external points is
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counterbalanced by the effect of the south end of an immediately

adjacent molecule. It is only at the extremities of such a chain of

molecules that the magnetisation can become manifest through the

production of external effects, and the magnetism is of opposite

kinds at the two extremities of the chain.

348. The Law of Magnetic Attraction and Repulsion. We can

investigate, by methods to be discussed subsequently ( 358), the

law of attraction or repulsion between the quantities of magnetism
which we assume to exist at the ends of magnets. The results of

such measurements make it evident that the force between two

quantities is directly proportional to the magnitude of each quantity,

and is inversely proportional to the square of the distance by which

they are separated. If we choose to regard an attractive force as

negative, and a repulsive force as positive, we can symbolise this

law by the equation

where q, q', represent the quantities of magnetism, and s is the dis-

tance between them ;
for F is positive or negative according as q

and q' are of like or of opposite signs.

This law is identical in form with the law of electrical attraction

or repulsion, and hence all the results which we have previously

deduced in the theory of electrostatics are capable of direct applica-

tion in magnetostatics.
349. Poles, Axis, and Magnetic Moment of a Magnet. Those

two points of a magnet, at which its north and south magnetisms

may be supposed to be concentrated, in order to produce the same

effects at external points as the actual distribution of magnetism

produces, are called the Poles of the magnet ; and the line joining

the poles is called its Axis.

In the case of a uniformly magnetised (rectangular or cylindrical)

bar magnet, the poles would be at the geometrical centre of the

ends of the magnet, and the axis would coincide with the axis of

figure. In any actual magnet the poles are not exactly at the

ends.

The quantity of north magnetism at the one pole of a magnet, or

the (equal) quantity of south magnetism at the other pole, is called

the Strength of the pole. The product of the strength into the

distance between the poles is called the Magnetic Moment of the

magnet. It is obviously analogous to the moment of a couple

(.70).

350- Lines of Magnetic Force. Magnetic Potential A region
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throughout which magnetic force is manifested is called a Field of

Magnetic Force, or, more shortly, a magnetic field. And we may
imagine this field to be filled with lines of magnetic force drawn in

the. direction in which a north pole would be moved. If we draw

from any magnetic pole a number of lines of force numerically

equal to 4;r times the strength of the pole, the number of these

which cross unit of area of any plane surface passing through any

point can be made to represent the strength of the field i.e., the

magnitude of the force at that point in the direction of the normal

to the given plane. In fact, as we have already seen, all the results

previously given regarding electric lines of force can be at once

applied to magnetic lines of force, and we, therefore, do not require

to repeat them here. It is merely necessary to replace the term
'

electrified body
'

by the term '

magnetised body,' the term '

positive

electricity
'

by the term 'north magnetism,' 'negative charge' by
'

quantity of south magnetism,' and so on.

A line of force can be readily traced out by means of a very
small magnet, freely suspended, which is always moved in the

direction in which it points. In every position its length is tan-

FIG. 193.

gential to the line of force which passes through its centre. The

lines of force due to any group of magnets can also be readily shown

by means of iron filings dusted over a sheet of paper, which is

placed over the magnets. The filings become magnetised and turn

so as to place their lengths in the direction of the force. A slight
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tapping of the paper will cause the filings to group themselves in

definite lines, each of which coincides with a line of force. The
vibration of the paper throws the filings up into the air for a

moment, so that they are free to accommodate themselves to the

influence of neighbouring filings. (See Figs. 193, 194.)

FIG. 194.

Following the electrostatic analogy, we may define the Magnetic
Potential at any point, due to a magnetic pole, as the work which

is expended in bringing a unit north pole that is, a north pole of

unit strength from an infinite distance to that point. The results

already deduced regarding electrostratic potential will then apply

directly to our present subject.

351. Magnetic Intensity. Magnetic Induction. If a rectangular

bar-magnet were uniformly magnetised in the direction of its length

(say), it is obvious that its total magnetic moment is equal to the

sum of the moments of any number of parts (uniformly magnetised
in the same manner), into which we may suppose it to be divided.

For, if L= Z1+Z2+ +Z- be the total length of the magnet, and

if Q be its pole -strength, we have

LQ=(Z1 + /3+ +Z.)Q=?iQ+ZaQ+ .... +Z.Q,

which proves the proposition so far as transverse division is con-

cerned. And, since the magnetisation is uniform, if we divide it

longitudinally, each part becomes a magnet, whose pole-strength is
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proportional to the area of its end. Hence, if A.= a1 + a
2+ . . . . an

be the total area of the end, and if 3E be the strength per unit of

area, so that fiA = Q = E(ai+2-f .... H-^)= ?i+92+ - > +9
where qlt etc., are the strengths of the several parts, we have

which proves the statement for longitudinal division.

But it is obvious that the statement is true whatever be the forms

of the parts into which the magnet is divided, for each part may be

supposed to be built up of an infinitely great number of infinitely

small rectangular portions. And it follows from this consideration

also that the proposition is true whatever be the form of the original

magnet.
The quantity I, the pole-strength per unit of area, is called the

Intensity of Magnetisation of the given magnet. It is evident

that we may regard it as being the magnetic moment per unit of

volume.

Let us imagine a cylindrical crevasse to be cut out in the interior

of a uniformly magnetised body. Let it be bounded by plane
surfaces perpendicular to the direction of magnetisation ; and, while

all its dimensions are infinitely small, let the perpendicular distance

between these planes be infinitely smaller than the transverse

dimensions. The surface density of magnetism on the plane faces

of the cavity is 3E, north magnetism being distributed on the plane
face next the south pole of the magnet, while south magnetism is

distributed on the other ; and hence the force in the space between

the planes is 47rH ( 99). We may therefore suppose that 47r$ lines

of force are drawn per unit of area across this cavity in the direc-

tion of magnetisation (that is, from the south pole to the north pole
within the substance of the magnet). It is customary to call these

lines the Lines of Magnetisation.
The lines of magnetisation do not constitute all the lines of

force in the interior of the magnet. There may be lines of force

due to external magnetisation. This distribution of force must be

investigated in precisely the same manner as that in which we

investigate the distribution of force outside a magnet.
Let us suppose that the cylindrical cavity is infinitely long in

comparison with its cross dimensions. The magnetisation at the

ends of this cavity exerts no effect upon a point at its centre, and
hence any force found at the centre must be due to external magne-
tisation. This quantity is denoted by the symbol jfy. and is called

the magnetic force at the point. The total force, IB, is called the
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Magnetic Induction at the given point in the magnet, and is

equal to

It is usual to call the total lines of force inside a magnet, Lines of
Induction. They consist, therefore, partly of lines of magnetisa-

tion, and partly of the lines of force within the uncut magnet. They
are continuous with the lines of force external to the magnet.

[It must be remembered that the three quantities 13, fi, and 1|,

are vector quantities, and are therefore subject to the laws of vector

addition
( 40). In most practical cases, however, IE and 1$ are

either similarly or oppositely directed.]
The force due to the magnetism at the surface of the magnetised

body is included in the quantity H?, and is obviously directed

oppositely to E since it acts in the direction of a line drawn from the

north pole to the south pole through the material of the body. It

therefore acts so as to demagnetise the body, and has its greatest

value 27rl at points close to the ends of the magnet (Compare 99).

[To obviate demagnetisation, bar magnets, when not in use, are

placed parallel to each other with their like poles oppositely directed,

and '

keepers
' made of a magnetic metal (soft iron preferably) are

placed in contact with their ends (Fig. 195). A closed magnetic

S N
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352. Permeability and Susceptibility. That property of a sub-

stance in virtue of which the lines of induction are more or less

closely arranged than are the lines of force in the originally undis-

turbed field is called the Permeability .of the substance. We have

^E+l
i ****

which may be written in the form

In this equation, the quantity ft represents the permeability, and &

represents the Susceptibility. The permeability is therefore the

ratio of the induction to the force within the substance of the

magnetic body, while the susceptibility is the ratio of the magnetisa-
tion to the magnetising force, and is a measure of the readiness of

the body to acquire magnetisation.
In a paramagnetic substance, as we have already seen, the lines

of induction are more closely arranged than are the lines of force.

That is to say, the permeability of such a substance is greater than

unity ; and therefore the susceptibility is positive. On the other

hand, in a diamagnetic substance, the lines of induction are less

closely arranged than are the lines of force ; and so the permeability

FIG. 196.

is less than unity, and the susceptibility is negative. In a para-

magnetic body, north magnetism is manifested at that extremity
which faces in the direction in which the external lines of force are

drawn; in a diamagnetic body, north magnetism appears at the

opposite end. Consequently, while a paramagnetic substance is

attracted towards the pole of a magnet, a diamagnetic substance is

repelled from it. In Fig. 196, the body marked p is paramagnetic,
the body marked d is diamagnetic.
More generally ; a paramagnetic substance moves from weak

parts to strong parts of a field of force, while a diamagnetic sub-

stance moves from strong parts to weak parts.

29
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353. Residual Magnetism. Betentiveness. Coercive Force.

We have already seen that some substances, such as steel, retain to

a considerable extent their state of magnetisation after the magne-

tising force is removed. The property in virtue of which this occurs

is termed Betentiveness.

The magnetism which remains, because of retentiveness, is

called Besidual Magnetism. From its great retentiveness, hard

steel is employed in the construction of so-called permanent magnets.
The residual magnetism of a long bar of steel is more permanent
than is that of a short bar, for the self-demagnetising force

( 351)

has less influence in the former case than it has in the latter.

Betentiveness has very different values in different materials. It

is relatively small in good specimens of soft iron.

In order to get rid of residual magnetism in any substance, we
must either heat the substance to redness, or employ a reverse

magnetising force. It is usual, therefore, to speak of a Coercive

Force as existent in the material in virtue of which residual

magnetism is retained.

354. Belation connecting Magnetisation and Magnetising Force.

If the magnitudes of any two of the quantities IS, $, and ^), are

determined in any particular case, the value of the remaining

quantity can be calculated from the relation 13 = 47r!-}-cf)' Methods

for the determination of each of the three quantities will be de-

scribed subsequently.

FIG. 197.

Fig. 197 represents the usual course of the variation of intensity

with magnetising force. The force is measured along the axis O;ij,

while the intensity of magnetisation is measured along the axis O1E.
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At first, while the force is small, the magnetisation increases very

slowly, and at a sensibly uniform rate. Then, as the force is

increased, the law becomes $.=0$ -\-bffi, a and 6 being constants.

After this, a very slight increase of the magnetising force produces
a great change in the magnetisation. With still larger forces, the

rate of variation becomes rapidly smaller, and ultimately the

magnetisation becomes sensibly constant. These various stages in

the process of magnetisation are represented by the parts OA, AB,
and BC, of the curve. If the force be now gradually removed, the

magnetisation will diminish at a relatively slow rate, until, when
the force is entirely removed, a considerable amount of residual

magnetisation remains. This is represented by OD.
If a reverse force be now applied, the magnetisation will fall off

rapidly in magnitude, and will disappear entirely when the reverse

force has a definite value OE. This may be supposed to represent,

as Hopkinson suggests, the coercive force.

If the reverse force be now increased until it reaches a value

equal to the maximum value of the direct force, if it be then

diminished to zero, and if, finally, positive force be reapplied until

the original maximum value is attained, the magnetisation will pass

through successive values represented by the part EC'D'E'C.

The curve OR represents the residual magnetisation which is left

after various magnetising forces have been applied and removed.

The dotted curve represents the change which takes place in the

magnetisation when the same substance (say a soft iron wire) is

hardened by being stretched beyond its limits of elasticity. The
maximum magnetisation is lessened. The residual magnetisation is

also lessened, but the coercive force is increased.

Since the magnetisation practically reaches a maximum value

when the force is sufficiently great, the substance is then said to be

saturated. However much the force may be further increased, the

intensity remains appreciably constant.

The susceptibility increases from a small value to a maximum
which is indicated by the tangent drawn from to the curve OBC.
Thereafter it diminishes to zero as the force increases without limit.

The relation
ju
= 47r&+l shows that the permeability also increases

from a small value to a maximum (attained at a somewhat greater
value of 35 than that at which the maximum susceptibility is

reached), after which it gradually diminishes to unity as the force is

indefinitely increased.

When soft iron is magnetised (more especially when the force is

feeble and, the specimen of iron is large) it is found that the

magnetisation takes some time to attain its full value corresponding
292
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to the force which is acting. This effect is, by analogy, said to be

due to Magnetic Viscosity.

355. Hysteresis. We see from Fig. 197, that the changes of

magnetisation tend to lag behind the changes of force which give

rise to them. Thus, when the stage C has been reached, a much

greater change in the value of the force is requisite in order to effect

a given diminution in the magnetisation than was requisite for the

production of an equal increase of magnetisation just before the

stage C was reached. A similar effect is observable at the point
C'. Ewing has called this tendency Magnetic Hysteresis.
As the result of hysteresis, different values of the magnetisation

may correspond to one given value of the magnetic force, and we
must therefore limit our definitions of permeability and suscepti-

bility to the case of a substance which is originally unmagnetised,
and which is subjected to a force which increases in magnitude con-

tinuously from zero upwards.
If E represent the magnetic energy of the magnetised body, the

increase of energy which accompanies an increase of intensity of

magnetisation d$. is - <?. Now 62, d~EldZ is the force which
an

produces the change d$ : that is, it is the force H. Hence the

increment of energy per unit of volume which accompanies the

increment of dJE is HdE; and therefore (compare 34) the area

CDC'D'C (Fig. 197) represents an amount of energy which has been

transformed, per unit of volume, in the given cyclical process. This

energy takes the form of heat, and is dissipated. Consequently,

rapid reversals of magnetisation will cause the temperature of the

magnetised substance to increase markedly; and no amount of

lamination, such as is used in transformers or in the armature

cores of dynamos for the prevention of heating by induced currents,

will prevent this effect.

No dissipation of energy occurs if the cyclical changes in the

magnetising force are small, and take place either very rapidly or

very slowly. For, in the former case, no time is allowed for a dimi-

nution to occur in the amount of lag of the magnetic effect behind

the change of force which produces it, whether in the direct or in

the reverse part of the cycle ; so that the direct changes of magneti-

sation are exactly reversed when the force is reversed ; and, in the

latter case, complete time is allowed to prevent noticeable lag from

making its appearance, that is to say, the changes in the force take

place so slowly that the proper changes of magnetisation can ensue at

all stages of the process ;
and so, again, the reverse changes of mag-

netisation follow, in the opposite direction, the same course as the
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direct changes. In any other case dissipation of energy will be

manifested.

It appears, therefore, that the so-called magnetic viscosity tends

to produce hysteresis. But, though this is so, the converse state-

ment that the existence of hysteresis implies the existence of viscosity

is neither necessarily nor actually true.

356. Effects of Vibration and of Temperature. Vibration has a

very great influence upon the susceptibility of a magnetised body.
This effect is very marked when the magnetising force is small, but

is not very noticeable, if at all, when powerful forces are used. It

increases the susceptibility of the substance, but diminishes residual

FIG. 198.

magnetism, coercive force, and hysteresis. These results are

exhibited in Fig. 198, in which the full curve represents a cycle

performed under the condition of no vibration ; while the dotted

curve represents the result of an experiment made upon the same

substance under similar conditions of force the substances, how-

ever, being tapped after each change in the magnitude of the force.

The temperature of a magnetic substance, too, has a very marked
effect upon its susceptibility. In iron, cobalt, and nickel, increase

of temperature (from ordinary values) first increases the suscep-

tibility, and afterwards diminishes it, as the magnetising force is

continuously increased ; and the magnetic properties entirely, and

suddenly, vanish when the temperature attains a certain value

which is different for each substance, and varies to some extent also

from one to another specimen of any substance.

The temperature at which the susceptibility vanishes is called the

Critical Temperature. It is a temperature at which some fun-
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damental change takes place in the physical constitution of the

metal. The electric resistance of this metal changes suddenly at this

point, as also does its thermo-electric power ( 328). When the

reverse change from the non-magnetic condition to the magnetic
condition takes place, as hard steel is cooled down from a tem-

perature higher than the critical temperature, a sudden liberation of

heat takes place, and the metal glows brightly, although it had pre-

viously cooled to dull redness.

In iron, the suddenness with which the magnetisation is lost as

the critical temperature is approached, depends very largely upon
the value of the magnetising force. When the force is very small,

the susceptibility first increases with extreme rapidity to a maximum,
and then diminishes with even greater rapidity, as the critical tem-

perature is approached. With higher forces, the variation becomes
much less marked.

There is little or no evidence of hysteresis with regard to the

magnetic effects which follow changes of temperature unless the

critical temperature be included within the cyclical range. But it

at once becomes evident when the range includes the critical tem-

perature ; for the temperature at which the magnetic effects re-

appear as the temperature is reduced, is lower than the critical

temperature at which they disappear when the temperature is

raised.

This lag of magnetic effect behind the change of temperature
which gives rise to it, is abnormally evident in certain alloys of

nickel and iron. An alloy containing 25 per cent, of nickel was
found by Hopkinson to lose its magnetic properties at a temperature
of 580 C., and to remain non-magnetic until its temperature fell

somewhat below the Centigrade zero. This fact suggests the idea

that non-magnetic manganese steel may become magnetic if its

temperature be sufficiently reduced, and that possibly all the non-

magnetic metals may act similarly.

357. Effects of Stress. Alteration of the state of stress to which

the magnetic metals are subjected, produces considerable alteration

of the magnetic qualities of the metals.

Matteuci observed that extension of an iron rod produced an in-

crease of magnetisation, and Villari found that when the field is

sufficiently intense, extension causes decrease of magnetisation.
This effect is called the '

Villari reversal.'

The various effects of longitudinal and of torsional stress have

been very fully investigated by Wiedemann, Sir W. Thomson, and

others.

Compression of an iron rod produces effects opposite to those
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which are produced by extension. Compression and extension,

respectively, of nickel and cobalt rods also produce respectively

opposite effects, but there is no Villari reversal in this case ;
for

all values of the magnetising force, extension produces diminution,

and compression produces increase, of the magnetisation. The

diminution of the residual magnetisation of nickel, under extending

stress, is even more evident than is the diminution of induced mag-
netisation. Hysteresis, under cyclical variation of load, is much
more marked in the case of iron than it is in the case of nickel.

From the above result regarding the effect of extension on the

magnetisation of an iron rod in a weak field, we can, by a double

application of the principle of stable equilibrium ( 15), deduce the

result that, in weak fields, increase of magnetisation causes increase

of length ; or, conversely, we can deduce the former result from the

latter. Magnetic energy enters the rod from the external medium,

and, in part, is transformed into potential energy of molecular con-

figuration within the rod; and this potential energy may be, in

turn, transformed into external work as the length of the rod alters.

Let us suppose, first, that the length of the rod is not allowed to

alter. Increase of magnetisation will then give rise to pressure on

the restraining surfaces which prevent alteration of length. Con-

versely, by the principle of stable equilibrium, decrease of pressure

will cause an increase of magnetisation under the given external

magnetic force. But, again, increase of pressure upon the restrain-

ing surfaces will result in increase of length of the rod if the re-

straint be removed. Conversely, increase of length will cause a

diminution of pressure. We may represent these results by the

symbolical expression

+M - +P - +L
II

+M <- -P<-is +L
where M, P, and L represent respectively magnetisation in weak

fields, pressure, and length. Disregarding the intermediate step,

the symbols state that increase of the magnetisation of an iron rod

in weak fields causes increase of length, and that increase of length

of the rod induces an increase of magnetisation. In strong fields

the expression would become

-> -Ps- -L
II

H-M <-ss +P <- -L

where P may be translated ' increase of tension.'
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[It is important to observe that, when we regard only changes of

magnetisation and of pressure (or tension), we are dealing with

energy flowing from an external system into the iron
;
and that,

when we regard only changes of pressure (or tension) and of length,

we are dealing with energy flowing from the iron rod to another

external system ; while, when we regard changes of magnetisation
and of length alone, we are dealing with energy flowing through
the rod from one external system to another, and being transformed

through its agency from one form to another.]

Joule proved that no observable change of volume takes place

when a rod of iron is magnetised, and therefore that longitudinal

magnetisation in weak fields must cause a diminution of the sec-

tional area of the rod. Hence he concluded that if a rod of iron be

magnetised circularly, that is, if the lines of magnetisation be circles

surrounding the axis of the rod, longitudinal contraction will ensue.

He verified this conclusion by experiment.
Torsional strain, also, is accompanied by variations in the magnetic

qualities of iron, nickel, and cobalt rods. These effects can, as Sir

W. Thomson has shown, be deduced from the known effects of

longitudinal stress upon the magnetic qualities. Thus it is known
that the susceptibility of iron in weak fields is increased along lines

FIG. 199.

of traction, and is decreased along lines of compression. But, when

a circular rod of iron is twisted in the manner which is indicated by
the arrows in Fig. 199, all lines such as a a1 suffer traction, while

all lines such as b b' suffer compression. Hence the susceptibility is

increased along a a' and is diminished along b b'. The effect of this

is practically to produce two components of magnetisation one

longitudinal, the other circular when the twist is sufficiently great.
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Hence torsion in weak fields diminishes the longitudinal susceptibility

of iron.

Conversely, a circularly magnetised iron rod, when twisted,

becomes longitudinally magnetised. It is easy to deduce the cor-

responding effects in nickel and cobalt. [No reversal of the direc-

tion of longitudinal magnetisation takes place in iron, however

strong the circular magnetisation may be. Ewing explains this by
the fact that the intensity of magnetisation in the direction of the

line of traction, or of compression, never reaches the point at which

the Villari reversal occurs.]

Since torsional stress produces circular magnetisation in a longi-

tudinally magnetised rod, and since it also gives rise to longi-

tudinal magnetisation in a circularly magnetised rod, we might

expect that the superposition of longitudinal and circular magneti-
sations would cause torsional strain. This effect was discovered

experimentally by Wiedemann in the case of iron. The twist in

weak fields takes place in such a direction as to be completely

explainable by the increase of length which occurs in the direc-

tion of resultant magnetisation. Knott has shown that the twist

occurs in the reverse way in nickel a result which he expected
to find, since nickel contracts in the direction of magnetisation.
We may observe here that the twisting of a magnetised' rod, or

the magnetisation of a twisted rod, gives rise to a transient electric

current in the magnetised material. This effect will be considered

in next chapter.
358. Magnetometric Measurements. The magnetometer consists

essentially of a small magnet, which is suspended by a long fine

fibre, whose co-efficient of torsion is negligeable in'most cases, and
which is free to turn about that fibre as an axis. A small mirror

is usually attached to the magnet, so that, by means of a reflected

beam of light, very small angular motions of the magnet may be

made evident. This apparatus is placed in a uniform field of force

of known intensity, say the earth's field ( 359). The magnet
then places its length in the direction of the force in the given
field.

Let the magnet be placed at P (Fig. 200), and let the direction of

the controlling force be PQ. Let AB be a bar magnet, the intensity
of magnetisation of which we have to determine, and let the points
A and B represent the position of its poles. Place it symmetrically
with regard to PQ in the position which is indicated in the figure.

Let I be its (unknown) intensity of magnetisation, while a is its

sectional area. Then la is the strength of its pole. The effect of

the north pole, A, at P is in the direction AP, and is equal to
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I&/AP 2
. Similarly, the directive force of the south pole, B, at P is

in the direction PB, and is equal to Ia/PB
2

. If we represent
these forces by AP and PB respectively, it is obvious that the re-

sultant effect of the two is represented on the same scale by AB.
The magnitude of the resultant is therefore IaAB/AP3

,
and acts so

as to place the little magnet at P parallel to AB, with its poles

facing oppositely to those of AB.

B

F G. 200.

Now let PR represent this force on the same scale that PQ repre-

sents the force of the external field. PS is the resultant of these

forces, and the little magnet sets itself in the direction PS, making
an angle 9 with PQ, such that tan = PR/PQ. If F be the intensity

of the external "force, this gives

(1)

from which we can calculate I.

In order to find the value of the force F, if it be unknown, we

may set the magnet AB oscillating under the action of F alone.

The time, T, of a small oscillation is given by the equation

T2~~
~
K '

where Kis the moment of inertia of the magnet about its axis

of suspension, and AB is its length. For if the direction of the

force F be denoted by the arrow (Fig. 201), and if ns represent the

magnet inclined at an angle 9 to the direction of the force, FS in

9 is the force which is acting perpendicularly to the length of the

magnet, and which tends to turn it around its axis of suspension.

This force acts at each end of the magnet so as to produce rotation
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in the positive direction, and the turning moment is therefore

F sin 9 laAB. When the angle is small, this becomes F0I&AB. The

angular acceleration is
( 42, 45), and the momentum which is

porduced per unit of time is m0K, where m is the mass of the magnet

/s

n>

F

FIG. 201.

and E is its radius of gyration ( 70). Hence the moment of

momentum which is produced per unit of time is ra0B2=K0, where

K is the moment of inertia ( 70). We therefore have

the minus sign being used, since the angular acceleration is nega-

tive. Now every quantity in this equation is constant, with the

exception of ; and so the equation expresses the fact that the

angular acceleration is negative and is proportional to the displace-

ment. The small oscillations of the magnet, therefore, obey the

simple harmonic law, and the angular position of the magnet is

given ( 51) by the equation

Pcos

where" P and Q are constants and t is the time
; whence T being the

periodic time, we get ( 51)

By elimination between the equations (1) and (2), we can find the

values of F and of laAB (which is the magnetic moment of the

magnet). Also, a and AB being known, we can obtain the value of

I ; and hence, if we know the intensity of the magnetising force,

we can calculate the susceptibility and the permeability of the

substance.

Equation (2) shows that the intensities of two fields are inversely
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proportional to the squares of the periods of the small oscillations

of a magnet of known magnetic moment, which is suspended first

in one field and then in the other.

The ballistic method of making magnetic measurements will be

discussed in 369.

359. Terrestrial Magnetism. The earth exerts a magnetic
action in virtue of which compass needles point in a northerly

direction. The angular distance between the line along which a

compass needle points and the geographical meridian is called the

magnetic declination or variation. The magnetic needle, if it were

carefully supported on an axis which passes through its centre of

inertia, and which is perpendicular to the magnetic meridian, would,

in Britain, place its magnetic axis in a direction which is inclined to

the horizon the north end pointing downwards at a considerable

angle. This angle is called the Magnetic Dip.
The declination and the dip vary considerably from one part of

the earth's surface to another. In some regions the declination is

easterly, in others it is westerly. The line on the earth's surface, at

all points of which the declination is zero, is called the Magnetic

Equator. It does not coincide with the geographical equator, and

is not a great circle. That point on the surface at which the north

pole of a magnet points vertically downwards is called the North

Magnetic Pole of the earth, and that point at which the south pole of

a magnet points vertically downwards is called the South Magnetic
Poleoi the earth. These poles do not coincide with the geographical

poles of the earth, neither do they lie at opposite extremities of a

diameter. [Observe that the magnetism which we may suppose to

be collected at the north pole of the earth must be south magnetism,

i.e., it must be of the same kind as that which appears at the south-

pointing pole of a magnet. Similarly, the magnetism which is

manifested at the south magnetic pole of the earth must be north

magnetism.]
The earth's magnetic force is in a constant state of variation. It

changes with the hour of the day and the time of the year ;
and it

depends also upon the position of the moon. Yet these variations

do not appear to be due to any direct action of the sun or the

moon.

Sudden disturbances sometimes take place in addition to these

more regular variations. A period of maximum disturbance

occurs every eleven years, and coincides with the period of maxi-

mum sun-spot disturbance.

A slow secular change of the position of the magnetic poles is

also in progress.
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360. Theories of Magnetism. At one time magnetic phenomena
were explained by the assumption of the existence of two imponder-
able fluids, one of which constituted north magnetism, while the

other constituted south magnetism. In Poisson's elaboration of this

theory a magnetic body was supposed to be made up of spheres of

infinite'' permeability, uniformly distributed in an absolutely non-

permeable fluid. This made the problem of magnetic induction

identical with that of electric induction in a non-conducting

medium, throughout which perfectly conducting insulated spheres

were uniformly distributed. Among other objections to this theory
is the fatal one pointed out by Maxwell, that the permeability of

iron is too great to be accounted for even if the spheres were packed
in the closest possible arrangement.
In modern theories the molecules are supposed to be little

magnets. In an unmagnetised body the magnetic molecules have

their axes distributed, on the whole, uniformly in all directions ; and

the substance becomes magnetised when the axes of its molecules

get, on the whole, a definite set in one direction. Saturation will

take place when all the molecules have set their axes in the direc-

tion of the magnetising force.

The fact that the slightest force does not produce saturation

shows that displacement of the molecules must be resisted by some
force. Weber assumed that each molecule is acted upon by a constant

force in the original direction of its axis, which tends to prevent its

orientation from that direction, and tends to make it resume its

original direction when it is displaced from it. It follows from this

assumption that the curve of magnetisation (Fig. 197) should at first

be a straight line, that it should afterwards become concave to the

axis along which the force is measured, and that it should ultimately

approach an asymptote parallel to that axis. This does not agree
with experiment.
Maxwell improved this hypothesis by the additional assumption

that a molecule could return to its original position if it were
turned through an angle of less than a certain finite magnitude, and
that if it were displaced through an angle greater than this, it would

retain, after removal of the force, a displacement equal to the

excess of its total displacement over this quantity. This form of

the theory leads to a magnetisation curve similar to that given by
Weber's unmodified theory, and it indicates that the curve of

residual magnetisation starts from a point on the force-axis at a
finite distance from the origin, is always concave to that axis, and

approaches a parallel asymptote. These results also are incorrect.

Ewing, following a limit by Maxwell, regards each molecule as
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subject only to the mutual action of the entire system of surround-

ing molecules. He has constructed a model of such a system by
means of a number of pivoted magnets, which are arranged in

parallel rows. So long as no external magnetic force acts, the

magnets arrange themselves in positions of stable equilibrium under
their mutual forces, some of them pointing in one direction, some
in another. This illustrates the condition of non-magnetised steel.

If only a feeble uniform magnetic force acts, each magnet is slightly
turned from its first position, which it reassumes when the force is

removed. This illustrates the first stage in the process of magneti-
sation. A somewhat stronger force causes instability in the origin-

ally less stable groups of the magnets, and the magnets which

compose these groups swing round into a new stable position. As
the external force is increased still further, more and more groups
break up, until all have taken the new position of equilibrium under
their own mutual forces and the external directive force. This

illustrates the second stage of magnetisation, in which the ratio of

magnetisation to magnetising force increases with great rapidity.
The third stage, in which this ratio is practically constant, is

exemplified by the fact that an infinite force is now needed to make
the magnets point exactly in the direction of the external lines of

force. If the external force be now removed, a considerable pro-

portion of the magnets retain their final positions of equilibrium
in other words, magnetic retentiveness is exhibited.

This model can also show the effects of strain on the magnetic

properties. For this purpose the magnets are placed on a sheet of

indiarubber. If the indiarubber is stretched the magnets are

separated out from one another in one direction, and are brought
nearer to each other' in a direction at right angles to the former.

The magnetic susceptibility is increased or is diminished, according
as the stability of the magnets is diminished or is increased by the

alteration of relative position. Similarly, the increase of the

susceptibility of iron with rise of temperature is explained by
the diminution of mutual magnetic influence which results from
increased distance. Professor Ewing suggests that the total loss of

magnetisation which occurs at a high temperature is due to a con-

tinuous whirling motion of the magnetic molecules. He suggests,

also, that the dissipation of energy, which occurs when hysteresis is

exhibited, is due to the induced electric currents ( 342), which are

caused by angular motions of the magnetic molecules.



CHAPTER XXXI.

ELECTROMAGNETISM, ETC.

361. Oersted's Discovery. Oersted found that a magnetic needle

always tends to place its length in a direction at right angles to a

plane which, passing through its centre, contains a linear circuit,

through which an electric current is flowing. The direction in

which the north pole points depends upon the direction in which

the current flows. The north pole always tends to move round the

linear circuit in a direction which is related to that of the current in

the way in which the rotation of a right-handed screw is related to

its linear motion.

After this fact was discovered, it was surmised that the converse

phenomenon might also be found to exist that motion of the linear

circuit, through which the current flows, would take place if the

magnet were fixed while the circuit was free to move. This was
verified experimentally by Ampere.
And, further, since a magnet can act thus upon two* neighbouring

circuits, through which electric currents flow, it was supposed that

mutual action might be found to exist between these circuits them-

selves if the magnet were removed. Ampere proved the existence

of this action also.

362. Magnetic Action of Closed Electric Circuits. The above

statement regarding Oersted's discovery shows that a linear electric

current is surrounded by circular magnetic lines of force. The
researches of Ampere and of Weber have enabled us to find the

distribution of electric force in the neighbourhood of any conducting
circuit.

It is found that a small plane closed circuit produces the same

magnetic action as a small magnet, placed at some point inside the

circuit with its length perpendicular to the plane, and having the

direction of its axis (measured from south pole to north pole)

related to the direction of the circulation of the current according to

the rule of right-handed screwing motion, while its magnetic
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moment is equal to the area of the circuit multiplied by the strength
of the current. [The word small means that the point at which the

action is determined is very far off in comparison with the dimen-

sions of the circuit.]

It is of no consequence in what part of the circuit the equivalent

magnet is placed ; and so we may assume that it is an extremely
thin magnetic shell, which fills the entire circuit, and is possessed
of a magnetic intensity which is numerically equal to the strength
of the electric current divided by the thickness of the shell. For, if

I, a, and t represent respectively the magnetic intensity, the area,

and the thickness of the shell, lat is the moment of the shell, and,

therefore, ia=Iat, or i= It, where i is the strength of the cur-

rent, and It is called the strength of the shell.

Now, let any finite circuit PQES (Fig. 202) be filled with a net-

work of infinitely small conducting meshes of any shape. Let a

current i circulate in the circuit in the positive direction. We may
assume that an equal current flows similarly in each of the meshes,
such &s ziqrs, f r the currents in each common side of two adjacent

FIG. 202.

meshes exactly neutralise each other. But, as above, the magnetic
effect of the current in each mesh may be supposed to be due to a

magnetic shell of strength i. And hence we see that the magnetic
action of the circuit PQES at external points is equivalent to that of

a magnetic shell of strength i, and of any form, which completely
fills the circuit.

It is easy to find a simple expression for the magnetic potential

of the shell. For, if d$ be an element of its surface, we may replace

the part of the shell which corresponds to dS by a small magnet,
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the strength of whose, pole is idSjt. The force with which the north

pole n (Fig. 203) acts on a unit north pole, placed at a point P, is

where r is the distance from P to n. The potential at P

FIG. 203.

due to n is, therefore, idS/tr. Similarly, the potential of s at P is

-
idS[tr' 9 where r' is the distance from P to s. The total potential

is, therefore,

_
:~~

since r' is practically equal to r. But r' rt cos 0, where 9 is the

angle between the axis of the magnet and the line joining P to its

centre, and t is the length of the magnet (equal to the thickness of

the shell). Hence

idS cos

Now, since the element of the surface of the shell is at right angles

to the axis of the magnet, dS cos 9 represents the resolved part of

the element normal to r, and dS cos 0/r
2
is the elementary solid angle

which the surface subtends at P. We may, therefore, write

wnere di represents this elementary angle. And, in order to find

the total potential V at P, due to the whole shell, we have merely
to sum all the quantities, such as V, for the whole surface.

Hence

that is, the potential at any point external to the magnetic shell is

equal to the product of the intensity of the current into the solid

angle which the shell subtends at the given point.

It follows that the work which is done upon a unit north pole by
the magnetic forces due to the current is ^i-wo), if the pole

passes from a place where w has the value w to a place where it has

the value w.2 - In particular, if the pole completely describes a

closed path which does not pass through the interior of the circuit

in which the current flows, the work is zero. If the pole passes

30
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by an external path from a point P, which is infinitely close to one

side of the shell, to a point P', which is infinitely near to P on the

opposite side of the shell, w changes by an amount which is infi-

nitely nearly equal to 47r, and the work which is done by the magnetic
forces is practically 4-n-i. But any shell of the proper moment,
which is bounded by the circuit, produces the same magnetic effect

at distant points as the current produces; and so we may now

replace the shell, whose action we are considering, by another shell

of the same moment, which is everywhere finitely distant from P
and P', and which is bounded by the same circuit. The forces due

to this shell do infinitely little work upon the unit north pole when
it passes from P' to P, and hence the work which is done upon the

unit pole in a single complete passage round a closed path which

passes through the circuit is 4?ri. In n such passages the work is 4-Trin.

363. Electrodynamic Action on an Electric Circuit. Let the

intensity of magnetisation of a shell, which produces the same

magnetic action as a given circuit, be I
;
and let the shell be placed

in a field of force the intensity of which is F. We may choose the

shell so that each element of its surface is at right angles to the

direction of the force in its immediate neighbourhood. Consider a

small portion ds of the north face of the surface. The total force

acting on this part is -\-FIds, the plus sign being used since we
consider it to be positive when it acts in the direction of the outward

normal to the north face. Similarly the force which acts on the

corresponding part of the south face is FIcZS ;
and therefore the

potential energy of this portion of the shell in the given field is

- FIdSt, where t is the thickness of the shell. Now it, the strength

of the shell is equal to t, the strength of the current ;
and so the

potential energy is -FidS. Consequently, the total potential energy
of the shell is

-N
where N is the whole force acting on the shell, that is, the number
of lines of force which pass through the circuit whose action is

represented by that of the shell.

When a force F produces a change df in one of the quantities

which determine the position of the circuit, the work which is

expended is Fdf, and the corresponding change in the potential

energy of the circuit is idN. Hence

And we see that the force F tends to produce or to oppose the

change df according as that change is accompanied by an increase,
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or by a decrease, of the number of lines of force which pass through

the circuit in the positive direction.

In particular, if a part of the circuit be moveable, the electro-

magnetic forces which act upon the circuit will tend to produce such

a displacement of the moveable part as will cause an increase of the

number of lines of force which pass through the circuit.

864. Case of Linear Circuits. We have already seen that a

linear circuit carrying an electric current is surrounded by circular

lines of force, the direction of which is related to that of the current

in the same way as the rotation of a right-handed screw is related

to its linear motion.

Let A B (Fig. 204) represent part of a fixed linear circuit through
which a current flows from A to B, and let ab be a portion of a

moveable parallel circuit through which a current flows from a to b.

We may assume that the circuit ab is completed by way of p. The

lines of force due to AB pass through abp in the positive direction,

and a displacement of ab towards AB would increase the area abp,

B

(! J f
A ""***

FIG. 204.

and so would cause an increase in the number of positively drawn
lines of force. Hence the electrodynamic action between the

circuits is such as to cause their mutual approach. [We would
arrive at the same result by the supposition that the circuit ab is

completed by way of q. For the lines of force due to AB pass

through the electric circuit abq in the negative direction. Hence
ab will move so as to diminish the area of abq, that is, so as to

diminish the number of negatively drawn lines of force which pass

through it.] Similarly, mutual repulsion will ensue if the currents

are oppositely directed.

Next let the circuits AB and ab be inclined to each other, and let

00' (Fig. 205) be the shortest line between them. Let us suppose

that, while AB is fixed, ab is free to turn around 00' as an axis.

Complete the circuit ab by way of p. No lines of force due to AB will

pass through abp when AB and ab are mutually perpendicular. On
the other hand, the number of lines which pass through it in the posi-

CO -2
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tive direction is a maximum when the currents in AB and ab are

parallel and similarly directed. The electrodynamic action on ab is

therefore such as to cause it to place itself parallel to AB. If either

current be reversed the moveable circuit will turn so that ba is

co-directional with AB.
365. Circular Circuits. Solenoids. 'Ampere's Hypothesis re-

garding Magnetism. A circular circuit, of radius r, which is

traversed by a current i, may be replaced by its equivalent magnetic
shell of intensity i[t ( 362). So also, a second circular circuit,

which is traversed by a current i', may be replaced by a shell of

intensity i'jt
r
. These shells will turn so as to place their

oppositely magnetised forces parallel, and will then exhibit mutual

attraction. Hence the electric circuits will tend to turn so that the

currents in each are parallel, and will then exhibit mutual attrac-

tion. But if, while the circuits are in this position, one of the

currents be reversed, mutual repulsion will be exhibited.

[It is an easy matter to calculate the force which such a circuit

carrying a current i, exerts at its centre. Let the centre be at o

(Fig. 206) and let a, c, be the points in which the circuit cuts the

plane of the paper the plane of the circuit being supposed to be

perpendicular to that plane. Imagine the circuit to be replaced by
an equivalent hemispherical magnetic shell ( 362) abc. The work
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which is done in displacing a unit pole from through a small

distance Od=r is i(w </), where w and
'

are respectively the

angles subtended at and d by the shell abc. If r be the radius,

the value of w is 27r, and the value of a/ is practically (27rr
2 -

2?rrr)/r
2

;

so that the work is 27rir/r. Hence the force, which is prac-

tically uniform when r is sufficiently small, is 2?ri/r; so that,

when r is unity, unit length of the current exerts a force i at the

centre.]

These phenomena can be readily exhibited by means of two

small floating cells, each of which consists of a test tube containing

dilute sulphuric acid into which dip zinc and copper plates connected

externally by a circular copper wire. The test tubes are inserted in

pieces of cork, and are floated on the surface ofi water.

A wire which is bent into a cylindrical helix in the manner indi-

cated in Fig. 207, is called a Solenoid. If it be freely suspended on

pivots, and be traversed by a current, it will act like a magnet
under the action of the earth's force or of other magnets or solenoids.

If the number of turns, n, per unit of length is large, we may

FIG. 207.

replace each nearly closed circuit by a shell, the intensity of

magnetisation of which is ra. Throughout the length of the

solenoid, the actions of the shells are mutually annulled, except at

the ends, where quantities of magnetism nia are found, a being'the

area of the shells. At points which are far distant in comparison
with the radius of the solenoid, the action is therefore equivalent to

that of a magnet of moment nial, where I is the length of the

solenoid.

In the interior of a very long solenoid, which contains n turns per

unit of its length, and through which a current i circulates, the

total force is equal to kirnia, where a is the area of a transverse

section. For the thickness of each shell equivalent to a turn of the

wire is 1/w, and therefore the surface density of the distribution of

magnetism on its two faces is -fni and ni respectively. Hence
the force at any point within each shell, and therefore throughout
the interior of the solenoid, is kitni. Thus a solenoid may be used

for the production of a very intense magnetic field; and this
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furnishes one of the most convenient ways of temporarily, or

permanently, magnetising a magnetic substance.

These properties of circular circuits and of solenoids led Ampere
to suggest that the molecules of magnetic substances may exhibit

their magnetic properties in virtue of electric currents which circu-

late within them in closed circuits.

366. Continuous Rotation under Electromagnetic Force. Elec-

tric Motors. We have already seen that no work is, on the whole,

done upon a magnetic pole which describes a closed path in a field

of force due to an electric circuit, provided that the path does not

pass through the interior of the circuit. But it is also true that no

work will on the whole be done upon a magnetised body which

completely describes a closed path passing through the interior of

the circuit ; for the body is composed of excessively small magne-
tised molecules, and the total amount of work which is expended

upon each molecule in the process is zero, since its north and south

poles are of equal strength.

But work will be expended on the whole if motion of part of the

circuit takes place, without interruption of the current, under the

action of external magnetic force. As an example, let us consider

a horizontal circular conductor AB (Fig. 208). A current which

B

FIG. 208.

enters this circuit at A, will divide into two parts, which reunite at

B and flow through the conductor BC to the point C, which is

connected with the negative pole of the battery to the positive pole

of which the point A is joined. The lines of force, due to the earth's

magnetic action, pass downwards through the circuit. In the

region ABC, their direction is related to that of the current accord-

ing to the law of left-handed screwing motion : in the region to the

other side of BC, their due action is related to that of the current

according to the law of right-handed screwing motion. Hence the

electrodynamic action upon BC will cause it to rotate in the direc-
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tion of the hands of a watch provided that it is pivoted at C, and

has a sliding contact at B.

If AB were a circular conducting disc, pivoted at C, and having a

sliding contact at its circumference, so that an electric current

flowed radially inwards, and if lines of force (whether due to the

earth or to external magnets) passed through it as above, con-

tinuous rotation of the disc in the direction of the hands of a watch

would ensue. This arrangement is known as Barlow's wheel.

Conversely, continuous motion of the magnet may take place if

the circuit be fixed while the magnet is free to move and the

direction of the current is reversed whenever the magnet passes

from one side of the circuit to the other. Indeed, it is easy to

arrange the conditions in such a way that continuous rotation of

the magnet will take place without periodic reversal of the direction

of the current. For example, let ns and n's' (Fig. 209) be two magnets,

B D

n-

A

FIG. 209.

which are connected together by the cross piece CD, and which,

being pivoted at B, are free to rotate about AB ; and let a current

flow continuously along AB. The direction of the circular lines of

force which surround AB is related to that of the current according
to the law of right-handed screwing motion; and therefore the

poles n and n' rotate around AB in that direction. And it follows

that a delicately pivoted magnet, along which a current flows, will

be similarly set in rotation, for it may be supposed to consist of a

number of magnets grouped around its axis.

These principles of electrodynamic action are applied practically

in the construction of electro-magnetic machines or motors for the

transformation of electric energy into mechanical work. The
electric circuits may be fixed while the magnets rotate

; or, prefer-

ably, the magnets may be fixed while the circuits rotate.

867. Electromagnetic Induction. The 'Dynamo.' We have seen

that the increase of the potential energy of an electric circuit through
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which a current i flows is -idN, where <#N is the increase of the

number of the lines of force which pass through the circuit in the

positive direction. Conversely, the work which is done upon the

circuit by the electromagnetic forces during a process in which the

number of lines of force which pass through the circuit increases by
the amount dN is tdN. If the conditions are such that this work can

be transformed into electric energy in the circuit, a reverse electro-

motive force must be produced which opposes the passage of the

current i. Now this electric energy is developed to the amount E

per unit of time, where E is the reverse electromotive force
( 342).

Therefore, since dN/dt is the increase of N per unit of time, we get

that is, a reverse electromotive force acts around the circuit which
at any instant is measured by the rate of increase of the number of
lines of force which pass through the circuit. [It must be re-

membered that a reverse electromotive force is one which tends to

produce a current in the circuit in a direction which is related to

the direction of the lines of force according to the law of left-handed

screwing motion.]
The phenomenon, whose existence we have here assumed, was

discovered experimentally by Faraday. He found that if, from

whatever cause, the number of lines of force passing through a circuit

is increased, a reverse electromotive force will act round the circuit,

and will produce a reverse current ; and that, if the number of lines be

decreased, a direct force will act and will produce a direct current.

The currents so produced are called induced currents. They only
last so long as there is a variation of the number of lines of force

in progress. In particular, they may be produced by the electro-

magnetic action which is due to varying currents in other fixed

circuits, or to the motion of other circuits which carry steady
currents ; or they may be due to the action of moving magnets.
For example, if a current be started in one direction in a linear

conductor, a transient current will flow in the opposite direction in

a parallel conductor ; and, if the direct current in the former be

stopped, a transient direct current will flow in the latter. Pheno-

mena such as these are caUed phenomena of mutual induction.

But it is important to observe that the number of lines of force

which pass through a closed circuit depends upon the current which

is flowing through that circuit as well as upon external currents.

These lines of force pass in the positive direction through the cir-

cuit, and so any increase in their number, due to an increase in the
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strength of the current, causes a reverse electromotive force in the

circuit which prevents the direct current from instantly attaining its

full strength under the action of a suddenly introduced electro-

motive force, or from instantly falling to zero when the force is

removed. This phenomenon is called self-induction, and was

investigated experimentally by Faraday. It can only be pre-

vented by arranging the circuit in such a way that its total area is

zero. For example, if a plane circuit be crossed upon itself in a

figure-of-eight shape, so that the areas of the two loops are equal,

no self-induction will occur, for the lines of force which pass

through each loop are equal in number, but are oppositely directed.

The number of lines of force which traverse one circuit because

of the electromagnetic action of another circuit through which a

current j is flowing is

N=/M, ........... (2)

where M is a quantity which depends upon the form and mutual

position of the two circuits ( 362), and is called the co-efficient of
mutual induction of the two circuits.

Let a constant electromotive force J act in the circuit through
which the current j is flowing, and let an electromotive force I act

in another circuit, through which a current i flows, and whose co-

efficient of mutual induction with regard to the former circuit is M.
Also let the resistance of the former circuit be. S, while that of the

latter is K ; and let the co-efficient of self-induction of the former be

Q ; while that of the latter is P. We get

If the two circuits are fixed, these equations become respectively

(6).
wi/ 14/lf

The first term on the right hand side of these equations represents
the reverse electromotive force due to mutual induction

; the second

represents the reverse force due to self-induction ; and the third

represents ( 336) the part of the electromotive force which main-
tains the current against the resistance of the circuit.



474 A MANUAL OF PHYSICS.

If the circuit in which J acts be entirely removed, the equation
which applies to the other circuit becomes

Let us suppose that the force I is maintained until the current

attains a steady value iu , after which I is withdrawn. We then have

P~+Ki= o,

which gives (38) _
E

i= iue

This shows that the intensity of the current diminishes in geo-

metrical progression as the time increases in arithmetical progres-

sion, and that it (theoretically) takes an infinite time to reach zero

intensity. Practically, the condition of zero intensity is in most

cases attained in a small fraction of a second. Similarly, we find

that the equation

represents the relation between the current i, at a time t after the

electromotive force I begins to act, and the steady current iu .

The introduction of iron cores into the circuits greatly increases

the self and mutual induction, because of the great permeability of

iron. This is the essential principle of the Kuhmkorff coil, which

consists of a coil of stout, insulated copper wire wound round an iron

core, and surrounded by another coil of very fine, well-insulated copper
wire. The inner coil is called the primary coil, the outer is called the

secondary coil. The former has very small resistance, while the latter

has very high resistance. The core is composed of a number of fine

iron wires for the purpose of preventing the induction of currents

within it, for these currents act so as to oppose the direct induction.

By this means feeble electromotive forces in the primary circuit may
give rise to very high electromotive forces in the secondary circuit.

In the modern '

dynamo
'

coils of wire with iron cores are caused

to move rapidly between the poles of a powerful electromagnet.

Induced currents are thus produced in the coils, and may be used

for purposes of electric lighting, etc. We cannot here enter into a

discussion of the various ingenious details of construction which are

adopted in these machines in order to secure high efficiency, or to
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adapt them for the performance of different duties. The subject

has now a complete literature of its own.

Arago found that a magnet, which is pivoted above a horizontal

copper disc, will be set into rotation if the disc be rotated. Faraday

explained this by the electromagnetic action of the currents which

are induced in the disc. If radial slits be cut in the disc, the action

will greatly cease ; for the induction of currents is prevented except

on a small scale.

Currents are induced in the body of a magnet itself whenever its

state of magnetisation varies. Thus, since an electric current flow-

ing along a rod is surrounded by closed lines of magnetic force, con-

versely, any change in the circular magnetisation of a rod will cause

the flow of a transient current along the rod. This may readily be

made manifest by connecting the ends of a twisted iron rod to

the terminals of a galvanometer ( 369), and suddenly magnetising
the rod longitudinally. Since the rod is twisted, longitudinal

magnetisation cannot occur without circular magnetisation ( 357),

and so a transient longitudinal current occurs, and is made manifest

by the galvanometer. The same effect is produced if a longitudin-

ally magnetised rod be suddenly twisted.

368. Electrokinetic Energy. Consider again the two electric

circuits dealt with in last section. Let them move so that M in-

creases by the amount dM, and let the motion be so slow that the

currents i and j are sensibly constant. The rate at which heat is

developed per unit of time in the two circuits is

and the rate at which energy is supplied per unit of time in main-

tainin the electromotive forces I and J constant is

Hence E-H=i(I-Ki)+y(J-S/) ;

which becomes E - H=2^' ,

dt

since, in (3) and (4) above, if i, j, P, and Q are constant, we get

, Tand 3-

But by (1) and (2) we see that

..dM
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represents the rate at which work is done in the circuit by electro-

dynamic action, and thus the equation shows that, under the given

conditions, an amount of energy must be drawn from the source in

a given time which exceeds that developed in the circuits in the

form of heat by twice the amount of work which is simultaneously

performed by the electromagnetic forces. This excess is called the

electrakinetic energy of the system. In Maxwell's theory it is

supposed to reside in the medium which surrounds the circuits.

It is transformed into heat, etc., whenever the circuits are broken
;

for the rupture of the circuits is, under these conditions, attended

by a spark of more than usual intensity.

A similar result can be" deducted from (5) and (6) when the

circuits are fixed and i andj vary.

369. The Galvanometer. The Ballistic Method. A galvano-

meter is an instrument by means of which the intensity of an

electric current is measured through the magnetic effect which the

current produces. It (as already stated) usually consists of coils of

wire in the interior of which a small magnet is freely suspended. In

its normal position the magnet has, under the action of an external

force, its length perpendicular to the axis of the coil ;
and the in-

tensity of a current is proportional to the tangent of the angle

through which the magnet is deflected from its normal position

when a current passes through the coil, for the current produces in

the interior of the coil a practically uniform magnetic field, whose

intensity is proportional to the current-strength and whose direction

is parallel to the axis ( 365), so that an equation of the form (1),

358, applies.

In other forms of the instrument the coil is freely suspended in a

constant magnetic field
;
and the name Electrodynamometer is

given to an instrument in which both of the magnetic fields are

produced by the current, which flows simultaneously through two

coils, one of which is fixed, while the other is freely suspended in

its interior or swings freely around it. The indications of the

latter instrument are proportional to the square of the current -

strength.

In the Ballistic Galvanometer the suspended portion has great

moment of inertia, and, consequently, has a long period of vibration

( 131). When a transient current, whose duration is very small

in comparison with the periodic time, passes through this instru-

ment, the total quantity of electricity which passes is proportional

to the sine of half the angle of deflection. Hence the instrument

may be applied to the investigation of magnetic properties. For

example, if a coil of wire connected with the galvanometer be
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wound on an iron bar the intensity of magnetisation of which is

varied from time to time, the transient current which follows each

variation of intensity produces a deflection in terms of which the

total quantity of electricity which passes can be calculated. Now,
if dN be the change of induction through the coil, we get by (1),

367,

where E is the electromotive force, which is equal to Bi, if i is the

intensity of the current and B is the resistance of the circuit. This

gives, as the total change of induction, the quantity

Hfidt,

if we assume that K is constant. But this is equal to B#, where q
is the total quantity of electricity which has passed. Its value may,

therefore, be determined experimentally by means of the indications

of the galvanometer. (It must be remembered that if the coil

consist, for example, of n turns wound closely on the bar, the actual

induction supposed to be uniform in the bar is ~Rqjn.) Hence

( 351, 352) we can determine the permeability and susceptibility

of the substance of which the bar is composed.
370. Electric and Magnetic Units. The magnitude of electric

and magnetic, as of all other quantities, depends upon the particular

units in terms of which they are measured. All such quantities

may be expressed in terms of the units of mass, length, and time ;

but the dimensions of a quantity in terms of these units depends

upon the particular definition of some electric or magnetic quantity
which we adopt.

Two systems of measurement are in use the Electrostatic and

the Electromagnetic. In the electrostatic system we start from the

definition that two similar unit quantities of electricity, condensed

at points which are at unit distance apart, repel each other (in air)

with unit force ( 312).

The dimensions of force are ( 64) (MLT~ 2
), and, therefore, the

dimensions of electric quantity are

Surface density of electricity is quantity per unit surface. Its

dimensions are, therefore, on this system,
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Electric potential and electric force have dimensions
( 313)

(tO^L-^CMWoT 1

)

and

respectively.

The dimensions of electrostatic capacity are ( 314)

those of current-strength are ( 335)

and those of resistance are ( 336) directly proportional to those of

potential and inversely proportional to those of current-strength ;

they are, therefore,

(K)=(L-
1
T).

On the electromagnetic system the definition of unit quantity of

magnetism is precisely analogous to the definition of unit quantity
of electricity in the electrostatic system. Hence the dimensions of

quantity of magnetism, surface density of magnetism, magnetic

potential, and magnetic force, are, on this system, identical with

the dimensions of the corresponding electric quantities on the

electromagnetic system.
In addition, the dimensions of magnetic moment and intensity

of magnetisation on the latter system are ( 349, 351)

and

respectively. The latter expression, of course, is identical with the

expression for the dimensions of surface density.
On the electromagnetic system, unit current is the current which,

flowing in a circular circuit of unit radius, exerts unit force per unit

length of its circumference upon a unit magnetic pole placed at its

centre ( 365). Hence the dimensions of current-strength are

The quantity of electricity which is conveyed through a conductor

is directly proportional to the strength of the current and to the

time during which it has been flowing. Therefore, its dimensions are
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The dimensions of electric potential when multiplied by quantity

of electricity are
( 320) identical with those of energy, and are,

therefore,

By such considerations we may readily determine the dimensions

of any electrical or magnetic quantity on either system of reckoning.

Some of the results are tabulated below, the dimensions on the

electrostatic system being given in the second column, while those

on the electromagnetic system are given in the third.

Electrical Quantities.

Quantity of Electricity ....... .'.

Surface density of Electricity

Electric Potential ...............

Electric Force ..................

Electrostatic Capacity ......... (L) (L T")

Current Strength ............... (MWT~ 3

) (M^L^T"
*

Kesistance ........................ (L~
lr
r) (LT"

1
)

Specific Inductive Capacity... (MLT) (IT
2T 2

)

Magnetic Quantities.

Quantity of Magnetism ...... (M^lJ")

Surface density of Magnetism (M^TT^

Magnetic Potential ............ (M^lA?

Magnetic Force .................. (M^T
Magnetic Moment ............

Intensity of Magnetisation ...

Magnetic Permeability ...... (L~
2T 2

) (ML T)

Magnetic Susceptibility ...... (L~
2 T 2

) (M LT )

It is specially worthy of notice that the dimensions of any

quantity on one or other of these systems always differ from

its dimensions on the other by the dimensions of a speed or of a

speed squared.
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The force between two quantities, q and g", of electricity at a

distance r apart in a medium other than air, is qq'Kr
2

,
where K is

the specific inductive capacity. Hence, if we choose not to define

the electrostatic dimensions of K as zero, but leave them undeter-

mined, the electrostatic dimensions of quantity of electricity become

Similarly, if we leave the dimensions of magnetic permeability (/*)

undetermined, we find that the electromagnetic dimensions of

quantity of electricity are

and the corresponding alterations in the dimensions of other quanti-

ties can easily be found. One advantage of this method (due to

Eiicker) is, as Fitzgerald pointed out, that we can make the dimen-

sions of any one quantity on both systems identical by assuming
that the dimensions of K and

/*
are (TL -1

).

It is convenient, in scientific measurements, to adopt the cen-

timetre-gramme-second (c.g.s.) system of units ; but, in practice,

these units are often inconveniently large or inconveniently small.

In the following table the name of the practical unit of various

quantities is given in the second column ;
and the factors which are

required to reduce the numerics, as expressed in terms of the prac-

tical units, to their equivalents on the c.g.s. system, are given in the

third column.

Quantity of Electricity ......... Coulomb ......... 10 l

Electromotive Force ............ Volt ......... 10s

Electrostatic Capacity ......... Farad ......... 10~ y

Microfarad ......... 10~15

Current Strength ............... Ampere ......... 10" 1

Resistance ........................ Ohm ......... 10

An electromotive force of one volt maintains a current, whose

strength is one ampere, through a resistance of one ohm.



CHAPTER XXXII.

ELECTROMAGNETIC THEORY OF LIGHT.

371. Magnetic Rotation of the Plane of Polarisation of Light.

Faraday made many attempts to detect some action upon polarised

light when it was made to pass through a dielectric which was sub-

jected to electric stress. He also sought for evidence of such action

when polarised light passed through an electrolyte conveying a

current, but in no case could he observe any effect. On the other

hand, he found a marked effect when polarised light was passed

through a diamagnetic medium placed in a field of magnetic force.

When the direction of the ray coincides with the positive direction

of the lines of force, the plane of polarisation is rotated through an

angle which is proportional to the intensity of the magnetic field,

and to the length of the path of the ray within the medium. If the

direction of the ray does not coincide with the direction of the field,

the rotation is proportional to the intensity of the resolved part of

the force taken in the direction of the ray. The amount of the

rotation per unit of length, in a field of unit intensity, depends upon
the nature of the medium. The absolute direction of rotation is

unaltered by a reversal of the ray, provided that the direction of

the field is unaltered.

In diamagnetic media the direction of the rotation is, in general,
connected with that of the field according to the law of right-handed

screwing motion ; in paramagnetic media, the reverse is generally
true.

The fact of the non-reversal of the rotation with reference to the

direction of the field points to a fundamental distinction between
the mechanical method by which this magnetic rotation is produced
and that obtained in cases of rotation by quartz or solutions such as

sugar ( 251). In the latter cases, reversal of the ray is not accom-

panied by a reversal of the rotation with reference to it ; and thus
the total rotation during the double passage through the medium

31
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'is zero. The total magnetic rotation is doubled by the double

passage.
In the case of vapours and gases, the rotation is very small in

comparison with the rotation which is produced, under similar con-

ditions, by solids and liquids. Even in vapours of liquids wThich

have considerable rotatory power, the effect is very small.

Verdet has shown that the rotation is approximately inversely

proportional to the square of the wave-length the deviation being
in defect as the wave-length increases, and being most marked in

substances of great dispersive power.
372. Hypothesis of Molecular Vortices. We have seen that a

plane polarised ray may be compounded of two uniform equi-

periodic circular motions of equal amplitude, and that rotation of

the plane of polarisation will take place if one of these component
motions is accelerated relatively to the other

( 251). The explana-
tion of the magnetic effect seems to lie in this direction.

Sir W. Thomson has remarked on this subject
' That the magnetic

influence on light discovered by Faraday depends on the direction

of motion of moving particles. For instance, in a medium possess-

ing it, particles in a straight line parallel to the lines of force,

displaced to a helix round this line as axis, and then projected

tangentially with such velocities as to describe circles, will have

different motions according as their motions are round in one direc-

tion (the same as the nominal direction of the galvanic current in

the magnetising coil), or in the contrary direction. But the elastic

reaction of the medium must be the same for the same displace-

ments, whatever be the velocities and directions of the particles ;

that is to say, the forces which are balanced by centrifugal force of

the circular motions are equal, while the luminiferous motions are

unequal. The absolute circular motions being therefore either equal

or such as to transmit equal centrifugal forces to the particles

initially considered, it follows that the luminiferous motions are

only components of the whole motion, and that a less luminiferous

component in one direction, compounded with a motion existing in

the medium when transmitting no light, gives an equal resultant to

that of a greater luminiferous motion in the contrary direction com-

pounded with the same non-luminous motion. I think it not only

impossible to conceive any other than this dynamical explanation of

the fact that circularly-polarised light transmitted through mag-
netised glass parallel to the lines of magnetising force, with the

same quality, right-handed always, or left-handed always, is pro-

pagated at different rates according as its course is in the direction,

or is contrary to the direction, in which a north magnetic pole is
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drawn ; but I believe it can be demonstrated that no other ex-

planation of that fact is possible. Hence it appears that Faraday's

optical discovery affords a demonstration of the reality of Ampere's

explanation of the ultimate nature of magnetism ;
and gives a defi-

nition of magnetisation in the dynamical theory of heat. The
introduction of the principle of moments of momenta ("the conser-

vation of areas ") into the mechanical treatment of Mr. Eankine's

hypothesis of " molecular vortices "
(see ^ 254), appears to indicate a

line perpendicular to the plane of resultant rotatory momentum

(" the invariable plane ") of the thermal motions as the magnetic
axis of a magnetised body, and suggests the resultant moment of

momenta of these motions as the definite measure of the "
magnetic

moment." The explanation of all phenomena of electromagnetic
attraction and repulsion, and of electromagnetic induction, is to be

looked for simply in the inertia and pressure of the matter of which

the motions constitute heat. Whether this matter is or is not elec-

tricity, whether it is a continuous fluid interpermeating the spaces
between molecular nuclei, or is itself molecularly grouped; or

whether all matter is continuous, and molecular heterogeneousness
consists in finite vortical or other relative motions of contiguous

parts of a body, it is impossible to decide, and perhaps in vain to

speculate, in the present state of science.'

The idea contained in these remarks has been developed by Max-

well into a complete theory of molecular vortices. He points out

that, from the fact that the wave-length, X, and the periodic time, r,

increase and decrease together, it follows that if for a given nume-
rical value of the angular velocity, n (

=
27r/r), the value of the speed

of propagation, X/r, is greater when n is positive than when it is

negative, for a given value of X the positive value of n will be greater
than the negative value. This is so since the former condition im-

plies that X is greater when n is positive than when it is negative,
and a diminution of X implies a diminution of r and therefore an

increase of n. Since the ray does not diminish in intensity as it

passes through the medium, the amplitude, r, must remain constant

( 179) ;
and the principle of conservation of energy shows that, for

equilibrium, we must have the condition

where T and V are respectively the kinetic and potential energies.
But the expression for T contains one term involving ri2

; and it may
contain terms involving the products of n into other velocities, and

312
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terms independent of n. V, on the other hand, is independent of n.

Hence the above equation is of the form

where A, B, and C, are functions of the co-ordinates. Now ex-

periment shows that n has two real values, one positive, the other

negative and smaller. C must therefore be finite, and both it and
B must be negative if A is positive; for B/A and C/A are re-

spectively the sum and the product of the roots of the equation, and
the sum is positive while the product is negative. B also cannot

vanish, since the roots are distinct. The term in n must there-

fore involve another velocity besides n, and that velocity must
be an angular velocity about the same axis, for Bn is a scalar

quantity.

Maxwell then concludes ' That in the medium, when under the

action of magnetic force, some rotatory motion is going on, the axis

of rotation being in the direction of the magnetic forces
;
and that

the rate of propagation of circularly polarised light, when the direc-

tion of its vibratory rotation and the direction of the magnetic
rotation of the medium are the same, is different from the rate of

propagation when these directions are opposite.
' The only resemblance which we can trace between a medium

through which circularly-polarised light is propagated, and a medium

through which lines of magnetic force pass, is that in both there is

a motion of rotation about an axis. But here the resemblance stops,

for the rotation in the optical phenomenon is that of the vector

which represents the- disturbance. This vector is always perpen-

dicular to the direction of the ray, and rotates about it a known
number of times in a second. In the magnetic phenomenon, that

which rotates has no properties by which its sides can be dis-

tinguished, so that we cannot determine how many times it rotates

in a second.
' There is nothingj therefore, in the magnetic phenomenon which

corresponds to the wave-length and the wave-propagation in the

optical phenomenon. A medium in which a constant magnetic
force is acting is not, in consequence of that force, filled with waves

travelling in one direction, as when light is propagated through it.

The only resemblance between the optical and the magnetic pheno-
menon is, that at each point of the medium something exists of the

nature of an angular velocity about an axis in the direction of the

magnetic force.'

.

* This angular velocity cannot be that of any portion of the medium
of sensible dimensions rotating as a whole. We must therefore con-
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ceive the rotation to be that of very small portions of the medium,
each rotating on its own axis. This is the hypothesis of molecular

vortices.
' The motion of these vortices, though ... it does not sensibly

affect the visible motions of large bodies, may be such as to affect

that vibratory motion on which the propagation of light, according
to the undulatory theory, depends. The displacements of the

medium, during the propagation of light, will produce a disturbance

of the vortices, and the vortices when so disturbed may react on the

medium so as to affect the mode of propagation of the ray.'

From this hypothesis Maxwell has deduced an expression for the

magnitude of the rotation under given conditions which accords very
well with the results of observation.

373. Hall's Effect. Hall found by experiment that a thin metallic

conductor, which is placed in a magnetic field of force with its

plane perpendicular to the lines of force, and through which an
electric current flows, is the seat of an electromotive force which
acts along the common perpendicular to the directions of the current

and the magnetic field. Kowland has proved that, if a similar

electromotive force appears when the electric displacement in an

insulating medium varies in a field of magnetic force, rotation of

the direction of the displacement will follow the passage of a wave

through the medium
;
and Glazebrook has shown that the electro-

motive force is a consequence of the molecular rotation which Max-
well assumes.

374. Kerr's Effects. The action upon polarised light in a medium

subjected to electric stress, for which Faraday sought in vain, was
discovered by Kerr. He placed two parallel brass plates at a short

distance apart, in a glass cell containing carbon bisulphide, and
connected them with the poles of an electric machine. A beam of

light, polarised at an angle of 45 to the direction of the lines of

electric force, was passed between the plates, and, on emergence,
was found to be elliptically polarised. The axes were respectively

parallel to and perpendicular to the lines of force
; and the differ-

ence between the phases of the two components was proportional to

the square of the intensity of the electric field.

Another form of this experiment consists in passing the polarised
beam between two small spheres which are placed near to each
other in the insulating medium, and are connected to the poles of

an electric machine. The medium is then found to have become

doubly refractive.

Dr. Kerr has also discovered that the plane of polarisation of light
is rotated in the act of reflection from the (highly-polished) pole of
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an electromagnet the direction of the rotation being reversed when
the magnetisation of the pole is reversed.

375. Electromagnetic Theory of Light. The phenomena which
are described in the immediately preceding sections point to a very
close connection between electricity, magnetism, and light.

We have already seen that the phenomena of light are best ex-

plained on the assumption that light consists in undulations pro-

pagated through a medium. On the other hand, the theories of

electrical and magnetic action were originally expressed in terms of

direct action at a distance ; and (although Faraday conducted all

his reasoning on the assumption of action through a medium) it was
not until Maxwell translated Faraday's ideas into mathematical

language that it was recognised that electrical and magnetic pheno-
mena could be readily explained as the results of the propagation of

action through a medium.
In determining the conditions of the propagation of an electro-

magnetic disturbance through the medium whose existence he

postulated, Maxwell arrived at the conclusion that the propagation
takes place in accordance with the laws of the transference of

motion through an elastic solid, and that the speed of propaga-
tion is

v=

where K and
^t

are respectively the specific inductive capacity and

the permeability of the medium. In the propagation of a plane

wave, electric displacement takes place at right angles to the direc-

tion of magnetic induction, and both are in the plane of the wave.

A reference to 370 will make it evident that", on either of the

electrostatic or the electromagnetic systems, the dimensions of

K are those of the inverse square of a speed. According to Max-

well, if light is an electromagnetic phenomenon, V must represent

the speed of light. Now the speed of light, v, is capable of

measurement to a considerable degree of accuracy, while the value

of V can be determined directly by a comparison of the relative

values of some electrical or magnetic quantity on the two systems
of measurement ( 370) ;

and the results of various independent

determinations of the values of V and v strongly confirm the

supposition of their numerical identity in air.

In media other than air the speed of light is inversely propor-

tional to the refractive indices. Hence K should be practically

equal to the square of the refractive index, for the value of p is

nearly unity in all transparent media. Since the experimental
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determination of K occupies a time which is practically infinite

in comparison with the period of any luminous vibration, we must,

in testing this point, take the refractive index for rays of infinite

wave-length. (This might be given by the value of the constant a

in Cauchy's expression for the refractive index, 209). Hopldnson
has found that while the relation holds in the case of hydrocarbons,
it does not obtain in glass and the animal and vegetable oils. In

the latter substances the refractive index is less than \/H.
In the luminiferous medium, two forms of energy exist one

kinetic, the other potential. Similarly, in the electromagnetic

medium, energy exists in a kinetic (electrokinetic, 368) form and
in a potential (electrostatic, 320) form.

The theory also explains double refraction, and leads to Fresnel's

construction for the wave surface. And it shows that the speed
of propagation of a condensational-rarefactional wave would be

infinite
; so that this wave does not exist a result which is in

harmony with optical observations. Also, if the medium be not a

perfect conductor, the electrical energy is in part transformed into

energy of electric currents, and so finally into heat. This explains
the absorption of light.

376. Electromagnetic Waves. The above evidence in favour of

the truth of Maxwell's electromagnetic theory is very strong in

itself. But recent investigations, by Hertz and others, have proved,

beyond the possibility of doubt, that electromagnetic action is

propagated with finite speed through a medium, and have indicated

that its speed of propagation is identical with that of light.

If the initial disturbance is periodic, a series of electromagnetic
waves are propagated outwards from the source. The condition of

periodicity can be obtained by means of the disruptive discharge,

which, under suitable conditions, is oscillatory in its nature ( 321)
and has a constant period of oscillation depending on the electro-

static capacity and the coefficient, of self-induction of the apparatus
which is used for the production of the discharge.

Let us suppose, for the sake of definiteness, that the discharge
takes place between the poles of a Holtz machine. The alternating
currents which characterise the discharge will induce similar

currents in neighbouring conductors. According to the theory of

direct action at a distance, these induced currents will appear in

exact simultaneity with the inducing currents ; according to the

electromagnetic theory, they will appear later and later in propor-
tion as the conductors in which they are induced are more and
more.remote from the Holtz machine.

In his investigations on this point, Hertz made use of the
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principle of resonance (cf. 173). That is, he used a secondary

conducting circuit the natural period of electric oscillation in which
was the same as that in the primary circuit. The result is that the

magnitude of the induced oscillations may be made very great, for

each succeeding induced oscillation is timed to re-enforce the effects

of preceding oscillations. In this way sufficient electromotive force

may be developed to cause the electricity to spark across a small

air-gap in the circuit.

Such a circuit, with its air-gap, may be used to make evident

the existence of inductive effects at any given point in space, pro-

vided that its distance from the source is not too great. If one

source alone existed in space, the intensity of the inductive effect at

any given point, and therefore the intensity of the spark in the

secondary circuit, would diminish continuously as the distance

between the point and the source increased. If two sources existed,

the intensity might be great in the neighbourhood of each and

might reach a minimum at some intermediate position : or, if the

effects of the sources were opposite, the intensity of the resultant

effect might be zero at some point between the two. If the effects

were instantaneously propagated, only one such minimum could

exist. But, if the effects were propagated by wave-motion at a

finite rate, a great number of maxima and minima might appear,

in accordance with the ordinary laws of interference. The best

results will be obtained when the two sources are precisely similar.

Now, if a conducting sheet be placed in the neighbourhood of a

single source, the currents which are induced in it will, in turn,

give rise to electromagnetic effects having a periodic time equal to

that of the source. This, on the electromagnetic theory, constitutes

reflection of the electromagnetic radiation, and interference may be

expected to take place between the incident and the reflected waves

nodes and loops occurring alternately at equal intervals of one

half of the length of a wave (53). In performing this experi-

ment Hertz was able to observe the existence of successive maxima
and minima, and so the existence of electromagnetic radiation was

proved.
If the original electrical oscillations take place along a straight

rod, the oscillations in the electromagnetic medium will be parallel

to the axis of the rod
; i.e., the wave is plane polarised. And the

rod is surrounded by circular lines of magnetic induction, the

direction of the induction changing with each alternation of electric

displacement. The electric displacement and the magnetic induc-

tion therefore take place in the front of the wave, and are at right

angles to each other ; and these two effects can be separated from
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each other by using a suitable resonating circuit. A circular

circuit held with its plane passing through the axis of the rod and

its spark-gap at right angles to the axis will respond only to the

magnetic variations. On the other hand, if held in front of the

axis with the line of its spark-gap and one of its diameters parallel

to the axis, it will respond only to the electrical variations, for no

lines of magnetic induction pass through it.

With apparatus such as is ordinarily used in a laboratory, radia-

tions having a wave-length varying from a few inches to a number
of miles in length, can be readily obtained. These long-period
radiations can pass freely through insulators, such as pitch, which
are opaque to luminous radiations. And, by using large prisms of

such substances, their refractive indices can be found by the usual

methods.

If the radiation falls upon a transparent sheet of thickness which
is small in comparison with the wave - length, no reflection is

observed ; for the acceleration of the phase by half-a-period, which
takes place at the second surface, produces total interference. This

is a reproduction of the phenomenon of the central black spot in

Newton's rings ( 221).

Keflection can be obtained at the surface of a fhick insulator if

the direction of the electric displacements is perpendicular to the

plane of reflection ; but none is found at the polarising angle if the

line of displacement lies in the plane of reflection. This proves that

the electric displacement takes place at right angles to the plane of

polarisation, and settles the much debated question of the direction

of the luminous vibrations in favour of Fresnel's assumption

( 239).

Effects of diffraction can also be observed with these waves, and
are in strict accordance with the results of the undulatory theory.
Maxwell concluded from his theory that a body which absorbs

light should be repelled towards the unilluminated side. The effect

is too small for observation with luminous rays even with con-

centrated sunlight ; but a disc of good conducting silver is repelled

from the- pole of an electromagnet which is excited by a powerful

alternating current.



CHAPTER XXXIII.

THE ETHER.

377. WHENEVER mutual action is observed between two systems, it

is possible to explain the accompanying phenomena, in great part at

least, on either of two assumptions. We may assume that the

action occurs directly at a distance, or we may assume that it is

propagated by means of a material medium. But when we can

show that the action takes time to travel from one point of space to

another, the latter assumption only is tenable. For example, we
have no evidence as yet ( 92) that gravitational action is not in-

stantaneously propagated, and therefore either assumption is valid ;

but the experiments of Hertz have shown that electrodynamic
action requires a finite time for its propagation over a finite space,

and therefore we must assume the existence of a medium by means
of which that action is transferred.

Such a medium is termed an '

ether,' and we may therefore

define the ether as a substance, other than ordinary matter, through
which action is propagated.

At one time many ethers were supposed to exist indeed, a new
ether was postulated for the explanation of almost every new class

of phenomena which presented itself. An ether was assumed in

order to explain gravitation. Newton introduced a medium to ac-

count for the production of the '

fits
'

of easy reflection and transmis-

sion of luminous corpuscles, which he had to postulate for the expla-

nation of the colours of thin plates, etc., on the corpuscular theory.

The aid of another was invoked for the explanation of physiological

phenomena, and so on the attributes with which each was endowed

being specially chosen in order to make it suit each particular case.

Such a procedure is totally unscientific, and it is now the aim of

scientists to ascribe all actions, which apparently occur directly at a

distance, to the intervention of a single medium. Of all the host of

mediaeval ethers, one alone remains the medium whose existence

was postulated by Huyghens in his explanation of the phenomena
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of light ; and one of the great merits of Maxwell's modern electro-

magnetic ether is that it explains the phenomena of light as well as

the phenomena of electricity and magnetism.
378. It is more easy to say what the ether is not than to say

what it is. It is not a gas, like air ; for transverse oscillations, such

as those which take place in the propagation of light, die out with

extreme rapidity in such a medium. Neither, for a like reason, is

it a liquid like water. So far as this effect is concerned, it might be

a transparent solid, for solids can transmit transverse oscillations.

But on the other hand, the rate at which transparent solids transmit

such vibrations is immensely slower than the rate at which the

ether transmits light. Hence the ether cannot be an ordinary

transparent solid, although it interpenetrates such solids, and is

hampered in its action by them a fact shown by the diminished

speed of light when passing through them.

Yet the ether, although it is not ordinary matter, must be

material, i.e., must possess inertia, for it transmits energy at a

finite rate. And, for the same reason, it must possess rigidity and

must be elastic. The rate of vibration of the parts of the medium
is (cf. $ 168) directly proportional to the square root of the rigidity,

and is inversely proportional to the square root of the density.

When red light passes through the ether, the rate of vibration is

about 400,000,000 times per second. A steel tuning-fork which

emits even the highest audible note would require to be immensely
more rigid than it is if it were to vibrate at that rate ;

if its rigidity

remained constant, it would require to be far less massive than it is.

It would appear from Thomson's calculations, based on a very

plausible assumption, that the ether is about (10)
9 times less rigid

than steel is
; but, on the other hand, its density would appear to

be about (10)
19 times less than that of steel.

379. It seems, therefore, that the ether acts as if it were an

elastic solid. And yet the earth, in its course round the sun, moves

through it without being subjected to any appreciable resistance ;

and the light which comes to us from a distant star gives no evi-

dence of the disturbing effect which the earth might be supposed to

have upon the ether in its neighbourhood as it moves quickly

through it.

Young therefore suggested that the structure of the earth and

other solid matter is such that the ether flows freely through it,

being subjected to no alteration other than a change of density.

But Stokes has shown that this rather startling assumption is

probably unnecessary, if the speeds of the earth and of the particles

of air in its atmosphere are small in comparison with that of light.
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Of course, the free motion of the earth through the ether shows

that, relatively to the moving earth, the ether acts like a practically

non-viscous fluid, and we have to explain how it is that the ether

can act both like a fluid and like an elastic solid. No explanation
of this point can be more lucid than the original explanation given

by Stokes :

' The plasticity of lead is greater than that of iron or

copper, and, as appears from experiment, its elasticity is less. On the

whole it is probable that the greater the plasticity of a substance,

the less its elasticity, and vice versa, although this rule is probably
far from being without exception. When the plasticity of the sub-

stance is still further increased, and its elasticity diminished, it

passes into a viscous fluid. There seems no line of demarcation

between a solid and a viscous fluid. In fact, the practical dis-

tinction between these two classes of bodies seems to depend on the

intensity of the extraneous force of gravity, compared with the

intensity of the forces by which the parts of the substance are held

together. Thus, what on the Earth is a soft solid might, if carried

to the Sun, and retained at the same temperature, be a viscous fluid,

the force of gravity at the surface of the Sun being sufficient to

make the substance spread out and become level at the top ;

while what on the Earth is a viscous fluid might on the surface of

Pallas be a soft solid. The gradation of viscous into what are called

perfect fluids seems to present as little abruptness as that of solids

into viscous fluids
;
and some experiments which have been made

on the sudden conversion of water and ether into vapour, when en-

closed- in strong vessels and exposed to high temperatures, go

towards breaking down the distinction between liquids and gases.
'

According to the law of continuity, then, we should expect the

property of elasticity to run through the whole series, only it may
become insensible, or else may be mastered, by some other more

conspicuous property. It must be remembered that the elasticity

here spoken of is that which consists in the tangential force called

into action by a displacement of continuous sliding ; the displace-

ments also which will be spoken of in this paragraph must be under-

stood to be such displacements as are independent of condensation

or rarefaction. Now, the distinguishing property of fluids is the

extreme mobility of their parts. According to the views explained

in this article, this mobility is merely an extremely great plasticity,

so that a fluid admits of a finite, but exceedingly small amount of

constraint before it will be relieved from its state of tension by its

molecules assuming new positions of equilibrium. Consequently

the same oblique pressures can be called into action in a fluid as in

a solid, provided the amount of relative displacement of the parts be
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exceedingly small. All we know for certain is that the effect of

elasticity in fluids [elasticity of form] is quite insensible in cases of

equilibrium, and it is probably insensible in all ordinary cases of

fluid motion. . . . But a little consideration will show that the

property of elasticity may be quite insensible in ordinary cases of

fluid motion, and may yet be that on which the phenomena of light

entirely depend. When we find a vibrating string, the small extent

of vibration of which can be actually seen, filling a whole room with

sound, and remember how rapidly the intensity of the vibrations of

the air must diminish as the distance from the string increases, we

may easily conceive how small in general must be the amount of

the relative motion of adjacent particles of air in the case of sound.

Now, the extent of the vibration of the ether in the case of light

may be as small, compared with the length of a wave of light, as

that of the air is compared with the length of a wave of sound
;
we

have no reason to suppose it otherwise. When we remember, then,

that the length of a wave of sound in air varies from some inches to

several feet, while the greatest length of a wave of light is about

00003 of an inch, it is easy to imagine that the relative displace-

ment of the particles of ether may be so small as not to reach, nor

even come near to, the greatest relative displacement which could

exist without the molecules of the medium assuming a new position

of equilibrium, or, to keep clear of the idea of molecules, without

the medium assuming a new arrangement which might be per-

manent.'

In this connection Thomson refers to the properties of shoemakers'

wax, which is so brittle that it will splinter under a sudden blow,

and which will flow like a liquid into all the crevices of the vessel

which contains it, while leaden bullets will sink down through it,

and corks will float up through it if only sufficient time be allowed

( 78). The resistance to the passage of a bullet or a cork through
it becomes smaller and smaller, the slower the motion becomes ;

and it may be that the motion of the earth through the ether is far

less, relatively to the resisting power of the ether, than is the motion

of ..the bullet or the cork relatively to the resisting power of the

wax.

380. The above theory of the ether is known as the elastic-solid

theory. This elastic solid cannot possess positive compressibility,

for in that case a condensational-rarefactional wave of, whose

existence we have no experimental- evidence might be propagated

through it with finite speed. Hence Green, who investigated the

properties of this ether, assumed that it was incompressible. He
recognised the case of negative compressibility, but dismissed it with
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the assertion that a medium which possesses negative compressi-

bility i.e., a medium which expands when subjected to increased

pressure, and contracts when pressure is removed is necessarily
unstable.

In order, on this theory, to account for the reflection and refrac-

tion of light at an interface, Green assumed that the ether had the

same rigidity, but was of unequal density, on the two sides of the

interface. This gave Fresnel's law in the case of vibrations per-

pendicular to the plane of reflection
; but, in the case of vibrations

in the plane of reflection, it gave a result which only coincided

with Fresnel's law when the refractive indices of the two media were

practically identical.

Sir W. Thomson assumed that the ether consists of an inviscid

fluid permeating the pores of an incompressible sponge -like solid :

but the result deviated further from Fresnel's law than Green's did.

He therefore had to abandon the doctrine of incompressibility ; and,

having pointed out that Green's negatively compressible medium
was not unstable if it were infinite or had rigid boundaries, he

assumed such negative compressibility as to make the velocity of

the condensational-rarefactional wave zero. He assumed (like

Green) equal rigidities of the ether in the media
;
but this condition

has been shown to be necessary for stability when the other

assumed conditions hold.

This contractile ether gives FresnePs laws
;
and Glazebrook has

shown that it explains the reflection and refraction of light by

transparent bodies and by metals, double refraction and dispersion

(including anomalous dispersion), and that it gives the correct

expression for the velocity of light in a moving medium.

Thomson has also shown how a model of a medium might be

constructed by rigid jointed connections and rigid revolving fly-

wheels (or gyrostats in which a frictionless fluid circulated irrota-

tionally) which has no intrinsic rigidity, i.e., no intrinsic elastic

resistance to change of shape, but which has a quasi-rigidity due

to inherent resistance to rotation ; which is absolutely devoid of

resistance to change of volume or to irrotational change of shape ;

which therefore is incapable of transmitting condensational-rare-

factional waves, but which can transmit vibrations like those of

light. It is therefore a practical realisation of his contractile ether.

381. The electromagnetic theory of the ether has been discussed

in the last chapter. It readily explains all the difficulties which

originally beset the elastic -solid theory ;
and the question of the

condensational-rarefactional wave never arises, for its velocity of

propagation is infinite. On some points its results differ from those
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of Thomson's theory, but the differences are too small to admit of

crucial tests being based upon them.

It must be observed, however, that this theory stands upon a

different footing from the former. No fundamental assumption is

made regarding the medium other than that it shall account for

certain electrical and magnetic actions.

382. The property of dilatancy in a medium composed of rigid

particles in contact accounts for a number of natural phenomena
and presents analogies to many others.

Let us suppose that we have a space filled with marbles or shot,

each being in contact with another on various sides. This condi-

tion can be satisfied by different arrangements of the spheres, so

that in some arrangements the volume occupied by a given number

is less than the volume occupied by the same number in other

arrangements. There is an arrangement of maximum volume and

an arrangement of minimum volume, and we cannot change the

hard spheres from one arrangement to another without altering

the volume. (This explains the meaning of the term '

dilatancy.')

Change of shape of 'such a mass of spheres cannot occur without

simultaneous change of bulk. Hence, if the mass be enclosed in

an inextensible, but flexible, boundary, no change of shape which

necessitates change of volume can occur.

If the mass of spheres is enclosed by a smooth boundary, motion

of the layer next the boundary will cause less alteration of volume

than does the motion of a layer in the interior of the mass. Hence,

when certain stresses are applied, there may be a streaming motion

of the spheres along the boundary, while the rest of the spheres do

not move. This conduction of the parts of the medium along a

smooth surface resembles the conduction of electricity.

If, in a large mass of spheres in the condition of maximum

density enclosed in an elastic boundary, one sphere grows in size,

the whole medium at first undergoes dilatation. Then the layer

next the growing sphere reaches the condition of maximum volume.

After that, the layer next the sphere will be returning to the

condition of minimum volume, while a layer a little farther out is

at maximum volume. Later, there will be a succession of maxima
and minima in the neighbourhood of the growing body.

When two bodies, growing in size, are present in the medium at

a considerable distance apart, the resultant dilatation, at any point,

due to both is less than the sum of the separate dilatations at that

point due to each. Thus there will be a force of attraction between

the bodies whose magnitude depends upon the rate at which the

dilatation varies with the distance between the bodies. The dilata-
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tion becomes periodic when the bodies are near to each other, and

attraction and repulsion occur alternately. This resembles the

phenomena of molecular forces.

Instead of supposing that the boundary is elastic, we may assume

that it is rigid, and that the growing spheres are elastic. We may
even suppose that the spheres are rigid provided that the medium
is composed of large spheres scattered uniformly among small

spheres, for such a medium may possess elasticity in virtue of the

propagation of distortional waves through it just as a slack chain

possesses elasticity when lateral vibrations are passing along it.

Even if the small grains were at maximum density, distortional

waves could pass, the distortions of the two sets of grains being

opposite. This may throw light on electrodynamic and magnetic

phenomena. Also, the separation of the two sets of grains would

produce phenomena analogous to those depending on the separation

of positive and negative electricities. And, with a certain arrange-

ment of the large and small grains, the state of stress in the medium
is the same as that which must exist in the ether in order to

account for gravity.

Such, in brief outline, is Osborne Eeynolds' theory of a granular
ether.

383. It has been shown also that an ether consisting of vortices in

a perfect fluid might be capable of transmitting light. And the

instantaneous propagation of gravitational action (if it be instan-

taneous) does not in this case present so great difficulty ; for, in a

certain sense, each vortex occupies all the space v^iich the fluid

fills its action is instantaneously felt in all parts.

384. It is not to be supposed that all these theories of the ether

are necessarily antagonistic. The vortex theory, for example, may
be the same as the elastic-solid theory.
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THE NUMBERS REFER TO THE SECTIONS.

ABERRATION, chromatic, 196

spherical, 196

Absorption, co-efficient of, 205

Absorptive power, 203, 256

Acceleration, 42, 43, 44, 46, 50

Accumulator, water-dropping, 322

Achromatism, 197

Actinometer, 260

Activity, 68

Adiabatics, 295

Amplitude, 51

Analogy, 15

Atmolysis, 112

Atom, 82, 139-141

Avogadro's Law, 150

BEATS, musical, 175

Biprism, 214

Boiling, 275

Bolometer, 34 3>

Boyle's Law, 103, 105, 149, 150

BREWSTER, 203, 208, 217, 223, 238,

243, 251, 263

Brittleness, 83

CALORIC, 254

Capillarity, 119-127

Carnot's cycle, 290, 291

CAUCHY, 146, 209, 258

Caustics, 184, 189
Cavendish experiment, 89

Characteristic function, 201

Charles' Law, 150, 265

Chemical combination, 280

Cohesion, 118, 137

Colour, 180

body, 205

surface, 206

Colours of crystalline plates, 248,
249

mixed plates. 222
thick plates, 223
thin plates, 218-221

Compressibility, 79
of gases, 102
of a perfect gas, 104
of vapours, 106
of liquids, 113
of solids, 128

Conductivity, thermal, 151

Conservation, 4, 12
of energy, 4, 10
of matter, 4, 5

Consonance, 175

Contact, angle of, 121

Coronse, 232
Coulomb's torsion balance, 312

Couple, 70
Critical angle of reflection, 188
Crucial test, 15

Crystalline structure, 143, 144

Curvature, 43

DENSITY, 64
of earth, 89, 90

Deviation, iirioimum, 192

Dew, 277

Dialysis, 117

Diamagnetism, 346

Dichroism, 205

Dielectrics, 306
Diffraction gratings, 233
Diffusion of gases, 109, 151

of liquids, 116

Diffusivity, 109

Dilatancy, 382

32
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Dilatation of gases, 265
of liquids, 264
of solids, 263

Dimensions, 18, 67

Discharging rod, 314

Dispersion, irrationality of, 197
theories of, 209

Displacement, 40

Disruptive discharge, 321

Dissociation, 152, 280

Dissonanc^, 175, 176

Divisibility, 79, 139

Doppler's principle, 178

Dulong and Petit, law of, 270

Dynamical similarity, 67, 73, 76,

'127, 168, 170, 171

Dynamics, 63

Dynamo, 367

EFFICIENCY, thermo-dynamic, 293

Effusion, 110

Elasticity, 79
of gases, 107
of liquids, 114
of solids, 134, 156

.Electric absorption, 321

charge, 310

current, 335, 343

density, 316

displacement, 319

force, lines of, 318

images, 317

induction, 310, 319

machines, 326

polarisation, 338

potential, 313

quantity, 310
v resistance, 335, 343

Electrodynamometer, 369
Electrokinetic energy, 368

Electrolysis, 337

Electromagnetic induction, 367

medium, 92

units, 370

waves, 376

Electrometer, 325
Electromotive force, 313, 343

Electrophorus, 311

Electroscope, gold-leaf, 309
Electrostatic capacity, 314

energy, 320
units, 370

Emissivity, 203, 256

Empirical formulae, 17

laws, 17

Energy, 4, 7-11, 62

conservation of, 10

dissipation of, 11, 297, 298

forms of, 8

kinetic, 8

potential, 8, 1 1

transformation of, 9, 11

Entropy, 296, 298

Epoch, 51

Equation, personal, 16

Equilibrium, of fluids, 75
of particles, 65

of rigid bodies, 69

stable, 15, 127, 331,

357

Equipotential surfaces, 96

Eriometer, 232

Errors, instrumental, 16

observational, 16

probable, 16

Ether, 179, 202

Evaporation, 152

Exchanges, theory of, 255, 256

Extension, 79

FARADAY, 276, 315, 319, 337, 367,

371

Fluid, equilibrium of, 75
motion of, 61, 74
motion of perfect, 74

Fluorescence, 208, 253
Focal lines, 184, 189

Focus, principal, 183, 193

Force, 62
lines and tubes of, 96

moment of, 70
measurement of, 64

Forces, composition bf, 65

molecular, 83, 125

range of, 145

Form, 79

Freedom, degrees of, 41, 54, 57

Freezing mixtures, 279

FRESNEL, 186, 212, 214, 237, 239,

240, 245
FresnePd rhomb, 252

Friction, 62

GALVANOMETER, 369
Gas battery, 341
Gaseous pressure, 149

Geysers, 275

Glaciers, motion of, 273

Graphical method, 17

j Gravitation, 8, 62, 85-101
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Gravitation, law of, 87

Gravity, centre of, 88

hypotheses in explanation
of, 91, 92

GREEN, 245, 380

Gyration, radius of, 70

Gyrostats, 58, 156

HAIDINGER'S brushes, 249
Hall's effects, 373

Halos, 198

HAMILTON, Sir W. B., 201, 246
Harmonic motion, simple, 51, 52
Harton experiment, 90

Heat, conduction of, 282, 287
convection of, 282, 288

latent, 272, 274, 276
mechanical equivalent of, 289

radiant, 253
radiation of, 257-259, 261

specific, 268, 269, 271, 301

total, 276

HELMHOLTZ, Von, 173, 209, 249,
338

Hoarfrost, 277

Hodograph, 48

HOOKE, 135, 147, 237
Hooke's Law, 135

Hope's experiment, 264

HUYGHENS, 186, 234, 235, 237

Hygrometer, 277

Hypothesis, 15

Hysteresis, 355, 356, 357

IMAGE, 182

real, 183, 195

virtual, 183, 195

Impact, 68 ,

Impenetrability, 79

Impulse, 68

Indicator diagram, 294-297
Inductive capacity, specific, 315

Inertia, 6, 79

centre of, 69, 88

moment of, 70, 71

Isothermals, 24, 295

JOULE, 147, 148, 289, 303, 357
Joule's Law, 342

KEPLER'S Laws, 86
Kerr's effects, 374

Kinetics, 63

KIRCHHOFP, 203, 204, 256
Kirchhoff8 Laws, 336

LEAST action, 200, 201

confusion, circle of, 184

time, 200, 201 .

Lenses, 193, 194
achromatic. 197

LE Boux, 207, 327, 333
LE SAGE, 91, 147

Leyden jar, 314

Light, absorption of, 202-209

colour of, 180
diffraction of, 224-233

dispersion of, 196, 197, 207,
209

intensity of, 177
interference of, 210-223, 247
nature of, 179, 242

polarisation of, 237-252, 371

propagation of, 177, 186, 225
radiation of, 202-204
reflection of, 181-186, 240

refraction of, 187-200, 240
refraction (double), 234-236,

244, 245, 250

scattering of, 181

speed of, 178
theories of, 179, 185, 186,

199, 200, 375

Lightning rod, 322

LLOYD, 213, 246

MACCULLAGH, 239, 240, 243, 245

Magnetic axis, 349

force, lines of, 350

induction, 351

intensity, 351

moment, 349

permeability, 352, 354

pole, 349

potential", 350

retentiveness, 353

shell, 362

susceptibility, 352, 354,

356, 357

viscosity, 354, 355

Magnetism, residual, 353

terrestrial, 359
theories of, 360, 365

Magnetometer, 358

Magnets, coercive force in, 353, 356

permanent, 344

temporary, 344

Malleability, 83

MALUS, 201, 237, 238, 243
'

Mass, 7

measurement of, 64
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Matter, 4, 5

definitions of, 77

general properties of, 79

heterogeneity of, 142, 145,
146

special properties of, 80, 83

specific properties of, 81

statts of, 78

MAXWELL, 24, 108, 145, 147, 152,

153, 154, 250, 319, 320, 360, 372,
375, 376

Metallic reflection, 206, 243

Microscope, 195

Mirage, 191

Molecules, 82, 154
size of, 146

Moment, 49

Momentum, 64

Motion, laws of, 63, 64, 65, 68
of centre of inertia, 69
of connected particles, 68
of non-rigid solids, 73
of particles, 64, 65, 66
of rigid body, 56, 57

Motor, electric, 366
Musical intervals, 167

NEBULAE hypothesis, 93

NEUMANN, 239, 240, 245

NEWTON, 63, 67, 68, 87, 88, 92, 186,

223, 237, 259
Newton's rings, 221

Note, 157

OHM'S Law, 336, 338

Osmose, 117

PARAMAGNETISM, 346

Paraselenes, 198

Parhelia, 198

Path, mean free, 148, 153

Pendulum, 9

ballistic, 68

Peltier effect, 331

Period, 51, 53

Phase, 51

Phosphorescence, 208, 253

Photometer, 177

Piezometer, 113

Polarising prisms, 252

Porosity, 79

I'osition, 39

Potential, 94

gravitational, 95

Precession, 58

PREVOST, 147, 203, 255

Primary cells, 340

Prisms, 192

Projectiles, 47

Pyrheliometer, 260

Pyro-electricity, 232

Pyrometers, 267

QUARTZ fibres, 89

RADIOMETER, 153

Rainbows, 198

RANKIXE, 254, 295

Reflection, total, 188

Refraction, conical, 246
index of, 187, 223

REGNAULT, 264, 265, 269, 271, 275,

276, 277
Residual discharge, 321

Resonance, 173

Restitution, co-efficient of, 68

Rigidity, 79, 83, 128, 131, 156

flexural, 133

torsional, 131

Ripples, 76

Rotation, 54, ,55
Rotational equilibrium, 72
Ruhmkorff coil, 367

SCALAR quantity, 40

Schehallion experiment, 90

Secondary cells, 341

Shear, 59

Solar radiation, 260

Solenoid, 365

Solution, 279

Sound, diffraction of, 164

intensity of, 161

interference of, 165, 175

pitch of, 166

propagation of, 158

quality of, 174
reflection of, 162

refraction of, 163

speed of, 159, 160, 172

wave-length of, 157

Spectrometer, 204

Spectrum analysis, 204

diffraction, 2?3

heat, 258

refraction, 196

Speed, 41

average, 45

mean square, 148

Specific heat of electricity, 332
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Statics, 63

STEWART, BALFOUR, 203, 256, 259,

261

STOKES, 208, 217, 224, 225, 234,

239, 242, 245, 379

Strain, 59, 60

Stress, 68

Surface-tension, 120, 125, 126, 127

Syren, 166

TAIT, 153, 278, 284, 330, 333

Telephone, 9

Telescope, astronomical, 195

Temperature, 262

absolute, 293
absolute zero of, 266,

303

critical, 24, 278
measurement of, 267

triple point, 24

Tenacity, 83, 138

Tensor, .42

Theory, 15

mathematical, 15

Thermal capacity, 268

conductivity, 283, 284
Therm<'dynamic motivity, 298

Thermodynamics, fist law of, 289
second law of, 292

Thermo-electric diagram, 330, 333

power, 328

Thermometer, 267

hypsometric, 275
wet and dry bulb,

277
Thermometric conductivity, 284

of crystals, 286
of earth's crust,

285

Thermopile, 328

THOMSON, 15, 92, 101, 126, 137,

141, 146, 148, 155, 209, 260, 273,

292, 293
Thomson effect, 332

Tone, 157

combination, 176

partial, 173

Transpiration, 111

Twist, 57

VECTOR, 40

Velocity, 41, 46

angular, 43, 58

average, 45

Vibrations of air-columns, 172

plates, 170

rods, 168, 169

strings, 17l_

Viscidity, 115

Viscosity, 79, 83
of gases, 108, 151

of liquids, 115
of solids, 136

Vortex atoms, 141, 156

motion, 61

Vortices, molecular, 254, 372

WATER equivalent, 269

Wave-length, 53

motion, 53

Waves, long or solitary, 76
on stretched cords, 73

oscillatory or free, 76

Weight, 64, 79, 85
Wheatstone's bridge, 343

Work, 7, 62

YOUNG, 211, 221, 222, 232, 237

Young's modulus, 130

ZONE plates, 230

THE END.

Bailliere, Tindall <k Cox, King William Street, Strand.
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